K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Xin lỗi tớ phải tắt máy rồibucminh

18 tháng 11 2021

a, Ta có: 

\(\widehat{ADC}+\widehat{ABC}=180^o\left(1\right)\)

\(\widehat{ADC}+\widehat{EDC}=180^o\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{EDC}\) (Cùng bù \(\widehat{ADC}\))

Ta xét hai tam giác ABC và EDC:

BC = DC (giả thiết)

AB = DE (giả thiết)

\(\widehat{ABC}=\widehat{EDC}\) (chứng minh trên)

\(\Rightarrow\Delta ABC=\Delta DEC\left(c.g.c\right)\)

b) Ta có: Tam giác ABC = tam giác EDC (chứng minh trên)

=> AC = EC (Hai cạnh tương ứng bằng nhau)

=> Tam giác AEC cân tại A

\(\Rightarrow\widehat{CAE}=\widehat{CEA}\left(3\right)\)

Ta có: \(\widehat{CEA}=\widehat{CAB}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{CAE}=\widehat{CAB}\)

=> AC là tia phân giác của \(\widehat{DAB}\)

B C E D A

20 tháng 7 2016

Bạn tự vẽ hình nhé!

a, (Mk nghĩ đề là góc B+D=180o)

 Xét tam giác ABC và EDC có:

          AB=DE (gt)

          DC=BC (gt)

           góc EDC=ABC = (180o- ADC)

=> tam giác ABC=EDC (c.g.c)

b, Tam giác ABC=EDC => AC=EC

=> tam giác ACE cân tại C=> góc DAC=DEC   (1)

Mặt khác hai tam giác trên bằng nhau => góc DEC=BAC   (2)

Từ (1) và (2) => góc DAC=BAC

=> AC là pg góc A

9 tháng 7 2017

Bạn có thể cho hình vẽ ko

20 tháng 6 2021

ý a, là chứng minh tam giác ABC=tam giác EDC hả?

a,theo giả thiết thì \(\left\{{}\begin{matrix}\angle\left(B\right)+\angle\left(ADC\right)=180^0\\CB=CD,DE=AB\left(1\right)\end{matrix}\right.\)

mà \(\angle\left(EDC\right)+\angle\left(ADC\right)=180^0\)(kề bù)

\(=>\angle\left(B\right)=\angle\left(EDC\right)\)(2)

từ(1)(2)\(=>\Delta ABC=\Delta EDC\left(c.g.c\right)\)

b,do \(\Delta ABC=\Delta EDC\)(cminh tại ý a)\(=>AC=CE\)=>\(\Delta ACE\) cân tại C

\(=>\angle\left(CAD\right)=\angle\left(CED\right)\left(\right)\left(3\right)\)

 do \(\Delta ABC=\Delta EDC=>\angle\left(BAC\right)=\angle\left(CED\right)\left(4\right)\)

(3)(4)\(=>\angle\left(CAD\right)=\angle\left(BAC\right)\)=>AC là phân giác góc A

12 tháng 9 2018

Bài 1:

a,xét tam giác ABC và tam giác EDC có:

AB=DE(gt)

DC=DC(gt)

góc EDC=ABC=(180 độ-ADC)

=>tam giác ABC=EDC(c.g.c)

b,tam giác ABC=EDC

=.AC=EC

=>tam giác ACE cân tại C

=> góc DAC=DEC(1)

Mặt khác 2 tam giác trên bằng nhau 

=>DAC=DEC(2)

Từ (1) và (2)=>DAC=BAC

=> góc AC là tia pg của A

---------------------------đợi mik nghiên cứu bài 2 đã chà nha học tốt---------------------------------

12 tháng 9 2018

AB//CD=>A+B=180 độ (hai góc trong cùng phía)(1)

A-D=20 độ(2)

Lấy (1)+(2)=>A+D+A-D=180 độ +20=> 2A=200=>A=100 độ

A+B=180 độ=>D=180 độ=>D=180 -A=180-100=80 độ

AB//CD>B+C=180 độ (hai góc trong cùng phía)

Hay AC+C=180 độ=>3C=180 độ =>C=60 độ

B+C=180 độ=>B=180 -C=180-60=120 độ

--------------------------------------------học tốt-------------------------------

16 tháng 6 2018

a) có góc B + góc ADC = 180 độ

góc ADC + hóc EDC = 180 độ 

=> góc B = góc EDC 

xét tam giác ABC và tam giác EDC có 

AB=ED( gt)

góc B = góc EDC (cmt)

CB=CD(gt)

=> tam giác ABC = tam giác EDC (c.g.c)

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC