K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Xét ΔABC có 

E là trung điểm của AB

N là trung điểm của AC

Do đó: EN là đường trung bình của ΔABC

Suy ra: EN//BC và \(EN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔBDC có

M là trung điểm của BD

F là trung điểm của CD

Do đó: MF là đường trung bình của ΔBDC

Suy ra: MF//BC và \(MF=\dfrac{BC}{2}\left(2\right)\)

Xét ΔABD có 

E là trung điểm của AB

M là trung điểm của BD

Do đó: EM là đường trung bình của ΔABD

Suy ra: \(EM=\dfrac{AD}{2}=\dfrac{BC}{2}\left(3\right)\)

Từ (1) và (2) suy ra EN//MF và EN=MF

Từ (1) và (3) suy ra EN=EM

Xét tứ giác ENFM có

EN//MF

EN=MF

Do đó: ENFM là hình bình hành

mà EN=EM

nên ENFM là hình thoi

17 tháng 2 2017

chán thì zề lớp học ik

17 tháng 2 2017

sao chán, b ma cung biet chan à

15 tháng 10 2017

chương 1 nha

29 tháng 8 2017

Tự làm đê em ơi cô Viết cho xong lên mạng chứ j

30 tháng 8 2017

thg kia m nói ai là em hả

21 tháng 11 2017

A B C D H I K

6 tháng 9 2017

Chắc do bn chưa đổi! Nhưng mak k có thi violimpic nữa đâu bn! Mk nghe ns lak bỏ hết ồi!

6 tháng 9 2017

lại có rồi bà chị

22 tháng 10 2017

Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3

Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3

Ư(3) = {\(\pm\) 3; \(\pm\) 1}

\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

Vậy \(n=\left\{0;-2;\pm1\right\}\)

11 tháng 10 2017

oho

AH
Akai Haruma
Giáo viên
13 tháng 8 2017

Lời giải:

Ta có \(P\) là trung điểm của $AB$, $N$ là trung điểm của $AC$ nên

\(AP=PB,AN=NC\Rightarrow \frac{AP}{PB}=\frac{AN}{NC}\)

Do đó theo định lý Tales suy ra \(PN\parallel BC\), mà \(AH\perp BC\Rightarrow PN\perp AH\) \((1)\)

Xét tam giác vuông tại $H$ là $AHB$ có $P$ là trung điểm của $AB$ nên $PA=PH$ . Tương tự, \(AN=NH\)$(2)$

Từ \((1),(2)\Rightarrow \) $PN$ là đường trung trực của $AH$

b) Do \(HM\parallel PN\Rightarrow HMNP\) là hình thang \((1)\)

Sử dụng tính chất so le trong và đồng vị với các đoạn \(PN\parallel BC, NM\parallel AB\) ta có:

\(\widehat{HPN}=\widehat{PHB}=90^0-\widehat{PHA}=90^0-\widehat{PAH}=\widehat{ABH}=\widehat{ABC}\)

\(\widehat{MNP}=\widehat{NMC}=\widehat{ABC}\)

Do đó \(\widehat{HPN}=\widehat{MNP}\) \((2)\)

Từ \((1),(2)\Rightarrow HMNP\) là hình thang cân.

13 tháng 11 2017

giúp mk câu c thôi nhé mk cho 3 tick