Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\widehat{A}+\widehat{B}=180\)=> AD // BC ( 2 góc trong cùng phía có tổng 180) => ABCD là hình thang
mặt khác: CB=CD => ABCD là hình bình hành ( hình thang có 2 cạnh kề bằng nhau là hình bình hành)
Dễ thấy AC là đường chéo của ABCD => AC là tia phân giác của \(\widehat{A}\)(đường chéo của hình bình hành là tia pg của 2 đỉnh )
Ta có: AB=BC (gt)
Suy ra: Tam giác ABC cân.
Nên (1)
Lại có \(\widehat{A-1}=\widehat{A-2}\) (2) ( Vì AC là tia phân giác của ^AA^)
Từ (1) và (2) suy ra\(\widehat{C-1}|=\widehat{A-2}\) nên BC// AD (do\(\widehat{C-2}\(ở vị trí so le trong)
~~~~ học tốt~~~~
D C F A B E P 1 2 1 2 1 2 3
Xét tứ giác PEBF có: \(\widehat{P}+\widehat{E_2}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F_2}=360^o\)(1)
Tương tự với tứ giác DEBF: \(\widehat{D}+\widehat{E}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F}=360^o\)(2)
Vì \(\widehat{B_2}+\widehat{D}=180^o\)=> \(\widehat{B_1}=\widehat{B_3}=\widehat{D}\)
(1) => \(\widehat{P}+2.\widehat{D}+\widehat{B_2}+\widehat{E_2}+\widehat{F_2}=360^o\Rightarrow\widehat{E_2}+\widehat{F_2}=360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\)
(2) => \(3.\widehat{D}+\widehat{B_2}+\widehat{E}+\widehat{F}=360^o\Rightarrow3.\widehat{D}+\widehat{B_2}+2\left(\widehat{E_2}+\widehat{F_2}\right)=360^o\)
=> \(3.\widehat{D}+\widehat{B_2}+2\left(360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\right)=360^o\)
=> \(2.\widehat{P}=360^o-\left(\widehat{D}+B_2\right)=360^o-180^o=180^o\)
=> \(\widehat{EPF}=\widehat{P}=90^o\)
A B C D E
Trên đường thẳng AB lấy điểm E sao cho AE=AD
Xét tam giác AEC và tam giác ADC có:
AD=AE
^DAC=^EAC ( AC là phân giác ^BAD)
AC chung
=> Tam giác AEC = tam gác ADC
=>^ADC=^AEC (1)
và EC=CD
mà DC=BC
=> EC=BC
=> Tam giác EBC cân tại C
=> ^CEB=^CBE (2)
Mà ^AEC+^CEB =180^o (3)
Từ (1), (2) , (3) => góc ADC + góc CBE =180^o
Chị ơi, mình không cminh đc \(\widehat{B}=\widehat{D}\)ạ?