Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N
c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)
\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)
Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)
d) Áp dụng hệ quả định lí Ta-lét,ta có :
\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)
\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)
\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)
\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)
Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)
Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)
P/S : Bạn xem lại đề để có thể xác định E,F nhé
Bạn tự vẽ hình nha
Nối AJ, JC, EI
Ta có: \(S_{EIJ}=S_{ECD}-S_{EDJ}-S_{EIC}-S_{IJC}-S_{CJD}=S_{ECD}-\frac{S_{EBD}}{2}-\frac{S_{EAC}}{2}-\frac{S_{AJC}}{2}-\frac{S_{BCD}}{2}\)
\(=S_{ECD}-\frac{S_{EAB}}{2}-\frac{S_{ABD}}{2}-\frac{S_{EAB}}{2}-\frac{S_{ABC}}{2}-\frac{S_{ADC}-S_{ADJ}-S_{DJC}}{2}-\frac{S_{BCD}}{2}\)
\(=\left(S_{ECD}-S_{EAB}\right)-\frac{S_{ABD}+S_{BCD}}{2}-\frac{S_{ABC}+S_{ADC}}{2}+\frac{S_{ADJ}+S_{DJC}}{2}\)
\(=S_{ABCD}-\frac{S_{ABCD}}{2}-\frac{S_{ABCD}}{2}+\frac{S_{ABD}+S_{BCD}}{4}=\frac{S_{ABCD}}{4}\)(ĐPCM)
P/s: Đây là một bài khó, nó chỉ là một bước trong bài này: Cho tứ giác ABCD, AB cắt CD tại E, AD cắt BC tại F. Gọi I, J, K lần lượt là trùng điểm của BD, AC, EF. Chứng minh: I, J, K thẳng hàng.(Bạn có thể tự giải thử =]] )
bạn à :D mình cũng đang hỏi cái câu bạn nói ấy bạn :D