Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath
A D B C E F H G
Ta có : góc F =\(180^o-\frac{\widehat{A}+\widehat{B}}{2}\)
Góc G = \(180^o-\frac{\widehat{B}+\widehat{C}}{2}\)( LIÊN HỆ GIỮA BA GÓC TRONG TAM GIÁC )
Cộng từng vế hai đẳng thức trên ta được :
\(\widehat{F}+\widehat{G}=360^o-\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=360^o-\frac{1}{2}.360^o\)
nên góc F + góc G =\(180^o\)
Lại có :
\(\widehat{E}+\widehat{F}+\widehat{H}+\widehat{G}=360^o\)
hay góc E + góc H + \(180^o\)= \(360^o\)
nên góc E + góc H = \(180^o\)
Vậy tứ giác EFHG là tứ giác có tổng hai góc đối bù nhau .
Chúc bạn học tốt !!!
Gọi giao điểm các đường phân giác trong tứ giác ABCD lần lượt là M, N, P, Q như hình vẽ bên trên.
Xét tam giác APB có: \(\widehat{APB}=180^o-\widehat{PAB}-\widehat{PBA}=\frac{360^o-\widehat{DAB}-\widehat{CBA}}{2}\)
Tương tự xét tam giác MCD ta cũng có:
\(\widehat{DMC}=\frac{360^o-\widehat{ADC}-\widehat{BCD}}{2}\)
Suy ra \(\widehat{QMN}+\widehat{QPN}=\frac{360^o-\widehat{ADC}-\widehat{BCD}}{2}+\frac{360^o-\widehat{DAB}-\widehat{ABC}}{2}\)
\(=\frac{720^o-360^o}{2}=180^o\)
Do tổng 4 góc trong một tứ giác bằng 360o nên ta cũng có \(\widehat{MQP}+\widehat{MNP}=360^o-180^o=180^o\)
Vậy tứ giác MNPQ có các góc đối bù nhau.
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath
2 góc đối của tứ giác đó có tổng bằng 180 độ
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath