K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn k mình đi mình giải cho

24 tháng 9 2021

Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.

Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)

Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)

Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP

Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700 

Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)

Kết luận: ...

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:
Vận dụng bổ đề $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:

$S_{ABCD}=S_{OAB}+S_{OBC}+S_{ODC}+S_{AOD}$

$=\frac{1}{2}.OA.OB.\sin \widehat{AOB}+\frac{1}{2}.OB.OC.\sin \widehat{BOC}+\frac{1}{2}.OD.OC.\sin \widehat{DOC}+\frac{1}{2}.OA.OD.\sin \widehat{AOD}$

$=\frac{1}{2}.OA.OB\sin 60^0+\frac{1}{2}.OB.OC.\sin 120^0+\frac{1}{2}.OD.OC\sin 60^0+\frac{1}{2}.OA.OD.\sin 120^0$

$=\frac{\sqrt{3}}{4}(OA.OB+OB.OC+OC.OD+OD.OA)$

$=\frac{\sqrt{3}}{4}(AC.BD)=\frac{\sqrt{3}}{4}.4.5=5\sqrt{3}$ (cm vuông)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Hình vẽ:

3 tháng 1 2022

tự làm đi

 

 

 

30 tháng 3 2019

Gợi ý: Kẻ AH và CK vuông góc với BD