Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\), có:
\(\left\{{}\begin{matrix}AM=MB\\AQ=QD\end{matrix}\right.\Rightarrow MQ\) là đường TB của \(\Delta ABC\)
\(\Rightarrow MQ\text{/}\text{/}=\dfrac{1}{2}BD\left(1\right)\)
Xét \(\Delta CBD\), có:
\(\left\{{}\begin{matrix}BN=NC\\CP=PD\end{matrix}\right.\Rightarrow NP\) là đường TB của \(\Delta CBD\)
\(\Rightarrow NP\text{/}\text{/}=\dfrac{1}{2}BD\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow NP\text{/}\text{/}MQ\)
Vậy...............
Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBDcó CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//PN và MQ=PN
=>MNPQ là hình bình hành
Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ N là trung điểm của BC (gt).
\(\Rightarrow\) MN là đường trung bình.
\(\Rightarrow\) MN // AC và MN = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác ADC có:
+ Q là trung điểm của DA (gt).
+ P là trung điểm của CD (gt).
\(\Rightarrow\) QP là đường trung bình.
\(\Rightarrow\) QP // AC và QP = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (2)
Từ (1); (2) \(\Rightarrow\) MN // QP và MN = QP.
Xét tứ giác MNPQ:
+ MN // QP (cmt).
+ MN = QP (cmt).
\(\Rightarrow\) Tứ giác MNPQ là hình bình hành (dhnb).
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Tứ giác có thể là hình vuông, chữ nhật phải không bạn?
P/s: Hỏi thôi chớ không trả lời đâu :D
a) ΔABC có FB=FC ( gt)
EA=EC ( gt)
Suy ra FE là đường trung bình của ΔABC
b) Ta có: FE=1/2 AB và FE//AB ( FE là đường trung bình của ΔABC)
mà AD cũng =1/2 AB. suy ra FE=AD (1)
có AD∈AB mà FE//AB. suy ra FE//AD (2)
Từ (1) và (2) ➜ DAEF là hình bình hành
Bạn tự vẽ hình nha, sorry vì mình biet nhiu đó
Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình
=> MN//AC và \(MN=\dfrac{1}{2}AC\)(1)
Xét tam giác ADC có:
F là trung điểm AD
E là trung điểm DC
=> EF là đường trung bình
=> EF//AC và \(EF=\dfrac{1}{2}AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrowđpcm\)
Xét ΔADB có
M là trung điểm của AB
P là trung điểm của AD
Do đó: MP là đường trung bình của ΔADB
Suy ra: MP//BD và MP=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
Q là trung điểm của CD
Do đó: NQ là đường trung bình của ΔBCD
Suy ra: NQ//BD và NQ=BD/2(2)
Từ (1) và (2) suy ra MP//NQ và MP=NQ
hay MPQN là hình bình hành