K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

(Vẽ hình: A là đỉnh của tứ diện, BCD là đáy của tứ diện) 
+ Trên mặt phẳng đáy BCD kẻ các đường cao của tam giác BCD là BE, CF, DK.Ba đường cao gặp nhau tại H. 
+ Xét mặt phẳng ABE 
CD vuông góc BE 
CD vuông góc AB 
=> CD vuông góc với mặt phẳng ABE => CD vuông góc với AH (1) 
+ Xét mặt phẳng ACF 
BD vuông góc AC 
BD vuông góc CF 
=> BD vuông góc với mặt phẳng ACF => BD vuông góc với AH (2) 
+ Từ (1) và (2) => AH vuông góc BCD 
=> AH vuông góc với BC 
Mà BC vuông góc với DK 
=> BC vuông góc với mp ADK => BC vuông góc với AD 

31 tháng 3 2017

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

22 tháng 3 2016

Từ \(2\overrightarrow{ỊJ}=\overrightarrow{AB}+\overrightarrow{CD}\) suy ra 

\(AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4IJ^2\Leftrightarrow CB^2+DA^2=CA^2+DB^2+2AB^2.CD^2\)

                                                \(\Leftrightarrow2.\overrightarrow{AB}\overrightarrow{CD}=AD^2-AC^2+BC^2-BD^2\)

10 tháng 9 2019

Giả sử AB ⊥ CD ta phải chứng minh:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy, kẻ BE ⊥ CD tại E, do AB⊥CD ta suy ra CD ⊥ (ABE) nên CD ⊥ AE. Áp dụng định lí Py-ta-go cho các tam giác vuông AEC, BEC, AED và BED ta có:

Nếu A C 2   −   A D 2   =   B C 2   −   B D 2   =   k 2  thì trong mặt phẳng (ACD) điểm A thuộc đường thẳng vuông góc với CD tại điểm H trên tia ID với I là trung điểm của CD sao cho Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự điểm B thuộc đường thẳng vuông góc với CD cũng tại điểm H nói trên. Từ đó suy ra CD vuông góc với mặt phẳng (ABH) hay CD ⊥ AB.

Nếu  A C 2   −   A D 2   =   B C 2   −   B D 2   = -   k 2  thì ta có và đưa về trường hợp xét như trên  A C 2   −   A D 2   =   B C 2   −   B D 2   =   - k 2 .

Chú ý. Từ kết quả của bài toán trên ta suy ra:

Tứ diện ABCD có các cặp cạnh đối diện vuông góc với nhau khi và chỉ khi A B 2   +   C D 2   =   A C 2   +   B C 2 .

7 tháng 12 2017

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Gọi I, K lần lượt là trung điểm của cạnh AB và CD

Qua K kẻ đường thẳng d // AB, trên d lấy A', B' sao cho K là trung điểm của A'B' và

KA' = IA

* Xét tam giác CKB’ và DKA’ có:

KC= KD ( giả thiết)

KB’= KA’( cách dựng)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11 ( hai góc đối đỉnh )

=> ∆ CKB’ = ∆ DKA’ ( c.g.c)

=> B’C = A’D

*Xét tứ giác IBB’K có IB= KB’ và IB // KB’ ( cách dựng)

=> Tứ giác IBB’K là hình bình hành

=> BB’ // IK (1)

Chứng minh tương tự, ta có: AA’// IK (2)

Từ (1) và (2) suy ra: BB’// IK// AA’ (*)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Lại có:IK ⊥ CK

=> IK ⊥ (CKB') (**)

Từ (*) và (**) suy ra BB' ⊥ (CKB') ; AA' ⊥ (CKB')

⇒ BB' ⊥ B'C; AA' ⊥ A'D

* Xét hai tam giác vuông BCB’ và ADA’ có:

BB’ = AA’ (= IK)

CB’ = A’D (chứng minh trên)

=> ∆ BCB’ = ∆ ADA’ ( cạnh huyền –cạnh góc vuông)

=> BC= AD.

* Chứng minh tương tự, AC = BD

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11