Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=4+3^2+3^3+3^4+.....+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right).\left(1+3^4+...+3^{96}\right)\)
\(=40\left(1+3^4+...+3^{96}\right)\) \(⋮40\) (đpcm)
xét \(3S=12+3^3+3^4+....+3^{100}\)
nên 3S-S=2S=\(3^{100}-3^2-4+12=3^{100}-1\)
=>S=\(\frac{3^{100}-1}{2}\)
Ta thấy \(3^2\equiv-1\left(mod5\right)\)nên \(3^{100}\equiv1\left(mod5\right)=>S⋮5\) (1)
ta có\(3^4\equiv1\left(mod16\right)\)nên \(3^{100}\equiv1\left(mod16\right)\)=>\(S⋮8\) (2)
từ (1) (2) =>S\(⋮40\left(đpcm\right)\)
a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)
\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)
\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)
Vậy A chia hết cho 4 ĐPCM
b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)
\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)
Vậy A chia hết cho 40 ĐPCM
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
S = (1 + 3) + (32+33)+.....+(398+399)
= 4 + 32 .(1 + 3) + .....+398.(1+3)
= 1 .4 + 32.4 + ..... +398.4
= 4.(1 + 32 + .... +398) chia hết cho 4
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
Ta có ;
S = 3 + 3 2 + 3 3 + ........ + 3 99 + 3 100
= ( 3 + 3 2 + 3 3 + 3 4 + 3 5) + .... + ( 3 96 + 3 97 + 3 98 + 3 99 + 3 100 )
= 3 ( 1 + 3 + 3 2 + 3 3 + 3 4 ) + .... + 3 96 . ( 1 + 3 + 3 2 + 3 3 + 3 4 )
= 3 . 121 + .... + 3 96 . 121
= 121 . ( 3 + .... + 3 96 ) chia hết cho 121 ( Do 121 chia hết cho 121 )
Vậy S = 3 + 3 2 + 3 3 + ........ + 3 99 + 3 100 chia hết cho 121
câu a)
\(S=3^0+3^2+3^4+...+3^{2002}\\ \Rightarrow9S=3^2+3^4+3^6+...+3^{2004}\)
từ đó ta suy ra : \(9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
vậy \(8S=3^{2004}-1\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
b) các số mũ lần lượt như sau : \(0;2;4;6;8;...;2002\)
ta có các dãy số hạng của những số trên là :
\(\left(2002-0\right)\div2+1=1002\) (số)
số nhóm mà chúng ta có thể ghép được là :
\(\dfrac{1002}{3}=334\) \(\left(nhóm\right)\)
\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\\ \Rightarrow S=\left(3^0+3^2+3^4\right)+3^6\times\left(3^0+3^2+3^4\right)+...+3^{1998}\times\left(3^0+3^2+3^4\right)\\ \Rightarrow S=1\times91+3^6\times91+...+3^{1998}\times91=\left(1+3^6+...+3^{1998}\right)\times91\)TA CÓ 91 CHIA HẾT CHO 7 CHO NÊN TA KẾT LUẬN RẰNG S ⋮ 7
S = 30 + 32 + 34 +.....+ 32002
32S = 32 + 34+.....+32002 + 32004
9S - S = 32004 - 1
8S = 32004 - 1
S = (32004 - 1)/8
S = 30 + 32 + 34 +....+32002
Xét dãy số : 0; 2; 4; ....;2002
Dãy số trên có số hạng là : (2002 - 0) : 2 + 1 = 1002 ⋮ 2
Nhóm 2 số hạng liên tiếp của tổng S thành 1 nhóm ta được
S = (30 + 32) +( 32 + 34) +....+ ( 32000+32002)
S = 28 + 32.( 1+32) +....+ 32000.( 1+32)
S = 28 + 32. 28 +....+ 32000.28
S = 28 .( 1 + 32+....+32000)
vì 28 ⋮ 7 ⇒ 28.( 1 + 32 +.....+ 32000) ⋮ 7
⇒ A = 30 + 32 + 34 +....+32002 ⋮ 7 (đpcm)
\(S=1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow S=1.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=\left(1+...+3^{96}\right).\left(1+3+9+27\right)=\left(1+...+3^{96}\right).40\)
\(\Rightarrow S⋮40\)
thank