K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

Ta co: 3+3^3+3^5+...+3^1991 = (3+3^3+3^5)+...+(3^1987+1989+1991) =3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4) =3.91+...+3^1987.91 =(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13 3+3^3+3^5+...+3^1991 =(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991) =3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6) =3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41

2 tháng 1 2020

WHY CHO 3^223 CƠ MÀ

Đề sai nha

S=3+32+33+...+3223

S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)

S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)

S=9840+...+3215.9840

S=9840.(1+...+3215)

S=41.240.(1+...+3215)\(⋮\)41

Vậy S\(⋮\)41

Chúc bn học tốt

24 tháng 12 2020

Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak

7 tháng 1 2020

Đây là đề thi toán tỉnh Bắc Giang nhỉ?

Bạn vào câu hỏi tương tự đi, có đó

7 tháng 1 2020

Vào đây nè : olm.vn/hoi-dap/detail/239306998482.html

5 tháng 5 2020

\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)

=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)

=> \(3S-S=3^{224}-1\)

=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên 

Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)

mà \(3^8-1=6560=41.160⋮41\) 

=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)

=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.

5 tháng 5 2020

Thank nha !

😊😊😊😊

23 tháng 10 2018

S=31+32+33+34+....+32012

=3x1+3x3+3x9+3x27 +......+32009x1+32009x3+32009x9 +32009x27

=3x(1+3+9+27)+35x(1+3+9+27)+....+32009x(1+3+9+27)

=3x40+35x40+....+32009x40

=>S\(⋮\)40

23 tháng 10 2018

S = 3 + 32 + 33 + 34 +...+ 32012 ( có 2012 số hạng)

S = ( 3 + 32 + 33 + 34) + ...+ ( 32009 + 32010 + 32011 + 32012) ( có 503 nhóm số hạng)

S = 3.(1+3+32 + 33) + ...+ 32009.(1+3+32 +33)

S = 3.40 +...+ 32009.40

S = 40.(3+...+32009) chia hết cho 40

24 tháng 12 2015

S=1+3+3^2+3^3+3^4+...+3^2009

=(1+3)+(3^2+3^3)+...+(3^2008+3^2009)

=4+3^2(1+3)+...+3^2008(1+3)

=4(1+3^2+...+3^2008) chia hết cho 4

Ta có :

 \(S=4+3^2+3^3+.....+3^{223}\)

\(=1+3+3^2+3^3+....+3^{223}\)

\(\Rightarrow3S=3+3^2+3^3+3^{224}\)

\(\Leftrightarrow S=\frac{3^{224}-1}{2}=\frac{\left(3\right)^{4^{56}}-1}{2}\)

Vì  \(3^4\equiv-1\left(mod41\right)\)

\(\Rightarrow3^{4^{56}}\equiv1\left(mod41\right)\)

\(\Leftrightarrow3^{4^{56}}-1\equiv0\left(mod41\right)\)

\(\Leftrightarrow\frac{3^{4^{56}}-1}{2}\equiv0\left(mod41\right)\)

Hay \(S⋮41\) ( đpcm )

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha