K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 10 2024

Lời giải:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$

Lại có:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.

28 tháng 3 2019

Ta có:\(S=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\frac{1}{9}\)

\(>\left(\frac{1}{5}+\frac{1}{5}+\frac{1}{5}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\frac{1}{9}\)

\(=\frac{3}{5}+\frac{3}{8}+\frac{1}{9}=\frac{216+135+40}{360}=\frac{391}{360}>1\)

Lại có:\(S< \left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)+\left(\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right)+\frac{1}{9}\)

\(=1+\frac{1}{2}+\frac{1}{9}\)

\(< 1+\frac{1}{2}+\frac{1}{2}=2\)

Vậy....

28 tháng 2 2017

S = 0.5397677312

12 tháng 3 2017

không biết

5 tháng 8 2015

Ta có S=1/2^2+1/3^2+1/4^2+...+1/9^2 
           <1/2²+1/2*3+1/3*4+....+1/8*9 
           =1/2²+1/2-1/3+1/3-1/4+....+1/8-1/9 
           =1/4+1/2-1/9=23/36<32/36=8/9 (♪) 
Ta lại có S=1/2^2+1/3^2+1/4^2+...+1/9^2 
                >1/2²+1/3*4+1/4*5+....+1/9*10 
                =1/2²+1/3-1/4+1/4-1/5+........+1/9-1/10 
                =1/2²+1/3-1/10 
                =19/20>8/20=2/5 ( ♫) 
                Từ (♪)( ♫) cho ta đpcm

29 tháng 1 2016

Đpcm là j thế bạn