Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và a2b2 = 2.(-5) =(-1).10 =c2d2
P(x) = (9x2 – 9x – 10)(9x2 + 9x – 10) + 24x2
Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:
Q(y) = y(y + 10x) = 24x2
Tìm m.n = 24x2 và m + n = 10x ta chọn được m = 6x , n = 4x
Ta được: Q(y) = y2 + 10xy + 24x2
= (y + 6x)(y + 4x)
Do đó: P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).
a) (x-14):2=24-3
(x-14):2 = 13
x-14 = 13.2
x-14 = 26
x = 26 + 14
x = 40
b) x572 = x <=> x = 1 hoặc 0
a, b làm như trên nha, còn mấy bìa còn lại :
M=1+2+22+...+211
M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)
M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)
M = 63 + 26.63
M = 63 ( 1+ 26)
M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9
S=3 + 32 +33 +.....+ 39
S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
S= 3. 13 + 3^4.13 + 3^7.13
S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13
M= 2+ 22 + 23+....+210
M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3
=> M chia hết cho 3
A= 7+ 72 + 73 +.....+78
A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)
A= 7. 400 + 7^5 . 400
A = 400( 7+7^5)
A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5
Ta có ;
S = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7
= ( 1 + 2 ) + ( 2 2 + 2 3 ) + ( 2 4 + 2 5 ) + ( 2 6 + 2 7 )
= ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )
= 3 + 2 2 .3 + 2 4 .3 + 2 6 .3
= 3 . ( 1 + 2 2 + 2 4 + 2 6 ) chia hết cho 3 ( Vì 3 chia hết cho 3 )
A = 3 + 3 2 + 3 3 + ..... + 3 9 + 3 10
= ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )
= 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )
= 3 . 4 + 3 3 . 4 + .... + 3 9 . 4
= 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )
\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)