Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2+2y^2}{306}=\frac{x^2-2y^2}{294}=\frac{x^2+2y^2+x^2-2y^2}{306+294}=\frac{x^2+2y^2-x^2+2y^2}{306-294}\)
\(=\frac{2x^2}{600}=\frac{4y^2}{12}=\frac{x^2}{300}=\frac{y^2}{3}\)
\(\Rightarrow\frac{x^2}{y^2}=\frac{3}{300}=\frac{1}{100}\)
Vì \(\frac{x}{y}>0\)\(\Rightarrow\frac{x}{y}=\frac{1}{10}\)
Vậy \(\frac{x}{y}=\frac{1}{10}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x^2-2y^2}{306}=\frac{x^2-2y^2}{294}=\frac{x^2+2y^2+\left(x^2-2y^2\right)}{306+294}=\frac{x^2+2y^2-\left(x^2-2y^2\right)}{306-294}\)
\(\Rightarrow\frac{x^2+2y^2+\left(x^2-2y^2\right)}{306+294}=\frac{x^2+2y^2-\left(x^2-2y^2\right)}{306-294}\)
\(\Rightarrow\frac{2x^2}{600}=\frac{4y^2}{12}\)
\(\Rightarrow\frac{x^2}{300}=\frac{y^2}{3}\)
\(\Rightarrow\frac{x^2}{y^2}=100\)
\(\Rightarrow\left(\frac{x}{y}\right)^2=100\)
\(\Rightarrow\left[\begin{array}{nghiempt}\frac{x}{y}=10\\\frac{x}{y}=-10\end{array}\right.\)
Chia cả 2 vế cho y2, ta được:
294(x2/y2+2)=300(x2/y2-2)
<=> 6x2/y2=2.294+2.300=1188 => \(\frac{x^2}{y^2}\frac{1188}{6}=198\)
\(\frac{x^2+2y^2}{300}=\frac{x^2-2y^2}{294}=\frac{x^2+2y^2+x^2-2y^2}{300+294}=\frac{2x^2}{594}=\frac{x^2}{297}=\frac{x^2+2y^2-x^2+2y^2}{300-294}=\frac{4y^2}{6}\)
\(\Rightarrow\frac{x^2}{297}=\frac{4y^2}{6}=\frac{2y^2}{3}\Rightarrow\frac{x^2}{2y^2}=\frac{297}{3}=99\Rightarrow\frac{x^2}{y^2}=99:\frac{1}{2}=\frac{99}{2}\)
Vậy \(\frac{x^2}{y^2}=\frac{99}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau \(\Rightarrow\)\(\frac{x^2+2y^2}{300}\)=\(\frac{x^2-2y^2}{294}\)=\(\frac{x^2+2y^2+x^2-2y^2}{300+294}\)=\(\frac{2x^2}{594}\)=\(\frac{x^2}{297}\)
Lại có:\(\frac{x^2+2y^2}{300}\)=\(\frac{x^2}{297}\)=\(\frac{x^2+2y^2-x^2}{300-297}\)=\(\frac{2y^2}{3}\)
\(\Rightarrow\)3\(x^2\)=297.2\(y^2\)\(\Rightarrow\)3\(x^2\)=594\(y^2\)\(\Rightarrow\)\(\frac{x^2}{y^2}\)=\(\frac{594}{3}\)=198
Vì mình mới học lớp 6
Nên không biết nha
Chuc các bạn học giỏi
\(\frac{x^2+2y^1}{300}=\frac{x^2+2y^1}{294}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x^2+2y^1}{300}=\frac{x^2+2y}{294}=\frac{x^2+2y^1-x^2-2y^1}{300-294}=\frac{0}{6}=0\)
\(\Rightarrow x^2+2y=0\)
\(\Rightarrow x^2=-2y\)
Ta có:
\(\frac{x^2}{y^2}=\frac{-2y}{y^2}=\frac{-2}{y}\)
a) Ta có: \(\frac{x+2y}{22}=\frac{x-2y}{14}\Rightarrow\frac{x+2y}{x-2y}=\frac{22}{14}=\frac{11}{7}\)
\(\Rightarrow7\left(x+2y\right)=11\left(x-2y\right)\)
\(\Rightarrow7x+14y=11x-22y\)
\(\Rightarrow14y+22y=11x-7x\)
\(\Rightarrow36y=4x\Rightarrow\frac{x}{y}=\frac{36}{4}=9\)
b) Ta có: \(\frac{x}{y}=9\Rightarrow\frac{x}{9}=\frac{y}{1}\Rightarrow\frac{x^2}{81}=\frac{y^2}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{81}=\frac{y^2}{1}=\frac{x^2+y^2}{81+1}=\frac{82}{82}=1\)
\(\Rightarrow\frac{x^2}{81}=1\Rightarrow x^2=81\Rightarrow\orbr{\begin{cases}x=81\\x=-81\end{cases}}\)
\(\frac{y^2}{1}=1\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Vậy .................
cho tam giác ABC ( góc BAC= 90 độ ) , AH vuông góc với BC.gọi E và F lần lượt là các điểm đối xứng của H qua AB;AC . đường thẳng EF cắt B;C lần lượt tại M và N .
CMR : a) AE=AF
B) HA là phân giác của góc MHN
c) Chung minh : CM song song với EH
cho : 2bx - 3cy /a= 3cx-az/2b = ay-abx/3c
chứng minh rằng : x/a=y/2b=z/3c