\(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:

a)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 6 2021

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{c}-1=\frac{b}{d}-1\Leftrightarrow\frac{a-c}{c}=\frac{b-d}{d}\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{c}{a}=\frac{d}{b}\Leftrightarrow\frac{c}{a}+1=\frac{d}{b}+1\Leftrightarrow\frac{a+c}{a}=\frac{b+d}{b}\)

5 tháng 12 2017

a,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)\(\Rightarrowđpcm\)

b,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)\(\Rightarrowđpcm\)

20 tháng 9 2018

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

20 tháng 9 2018

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

#

2 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm

2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2) ->Đpcm

9 tháng 10 2020

Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)

Còn ý b làm tương tự nha!
23 tháng 9 2021

a/

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (t/c dãy tỷ số bằng nhau)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{a+c}{a}=\frac{b+d}{b}\left(dpcm\right)\) 

b/

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\left(dpcm\right)\)  (t/c dãy tỷ số bằng nhau)

a)  \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d )  = c . ( a + b )

=> ac + ad = ac + cb

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

18 tháng 9 2016

Khó quá! Mình chưa học tỉ lệ thức

5 tháng 10 2016
đặt x/4=y/7=k suy ra x=4k y=7k mặt khác xy=112 suy ra 4k.7k=112 k^2.(4.7)=112 k^2.28=112 k^2=4 k=2;-2 x/4=2 x=8 y/7=2 y=14 x/4=-2 x=-8 y/7=-2 y=-14 2/ ta có a/b=c/d suy ra ad=bc suy ra ab+ad=ab+bc a(b+d)=b(a+c) suy ra a/b=a+c/b+d 3/ ta có a/b=c/d suy ra b/a=d/c 1-b/a=1-d/c suy ra a-b/a=c-d/c
25 tháng 7 2019
https://i.imgur.com/oq3xvVb.jpg
25 tháng 7 2019

bạn làm cách nào mà có câu trả lời bằng hình ảnh

22 tháng 9 2019

a)

i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)

Chúc bạn học tốt!


22 tháng 9 2019

còn ii và phần b nữa

AH
Akai Haruma
Giáo viên
16 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.