Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), chứng minh rằng
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)=k
\(\Rightarrow\)a=bk;c=dk
ta có:\(\frac{a.b}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{kb^2}{kd^2}\)=\(\frac{b^2}{d^2}\)
ta có:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{k^2.b^2+b^2}{k^2.d^2+d^2}\)=\(\frac{b^2(k+1)}{d^2(k+1)}\)=\(\frac{b^2}{d^2}\)
vậy:\(\frac{a^2+b^2}{c^2+d^2}\)\(=\)\(\frac{ab}{cd}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) ; \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}\)\(=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)\(\left(đpcm\right)\)
Cho tỉ lẹ thức \(\frac{a}{b}=\frac{c}{d}\)Chứng minh rằng \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\).
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)
=> \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(Đpcm)
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2012a}{2012c}=\frac{2013b}{2013d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{2012a}{2012c}=\frac{2013b}{2013d}=\frac{2012a+2013b}{2012c+2013d}=\frac{2012a-2013b}{2012c-2013d}\)
\(\Rightarrow\frac{2012a+2013b}{2012a-2013b}=\frac{2012c+2013d}{2012c-2013d}\)
Vậy...
dễ vậy mà k nghỉ ra cam mơm