K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

bacd=dacb vay ...

10 tháng 12 2016

tự làm đi cái này không khó 

22 tháng 11 2018

bn có lời giải chưa

4 tháng 12 2019

Nhanh lên

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)

\(\Rightarrow\)\(a+b+c=a+b-c\)\(\Leftrightarrow\)\(c=0\)

28 tháng 7 2019

#)Giải :

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)

\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow c-\left(-c\right)=0\Rightarrow c+c=0\Rightarrow c=0\left(đpcm\right)\)

28 tháng 7 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow\frac{a+b+c}{a+b-c}=1\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)(đpcm)

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Áp dụng ............... ta có :

 \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}=K\)

\(\frac{a-b}{c-d}=\frac{a}{c}=\frac{b}{d}=K\)

\(DoK=K\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( đúng ) 

25 tháng 7 2016

làm tào lao

22 tháng 6 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)

=> a + b + c = a + b - c

=> c = -c

=> 2c = 0

=> c = 0( đpcm) 

10 tháng 10 2020

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)

\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)

Nhân vế (1) và (2) lại ta được:

\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)