K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Ta có : \(\frac{a+b}{c+d}\) = \(\frac{b+c}{d+a}\) 

Cộng 1 vào mỗi tỉ só ta được \(\frac{a+b+c+d}{c+d}\) = \(\frac{a+b+c+d}{a+d}\) 

- Nếu a+b+c+d khác 0 thì c+d = a+d nên a=c

- Nếu a+b+c+d = 0 thì bài toán được chứng minh ( xảy ra được a+b+c+d = 0 ; chẳng hạn a=1; b=2; c=3; d=-6)

5 tháng 8 2016

nếu a+b+c+d khác 0 thì ta có

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)

a+b=b+c

—>a=c

 

29 tháng 8 2016

bacd=dacb vay ...

10 tháng 12 2016

tự làm đi cái này không khó 

4 tháng 12 2019

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

+ Nếu \(a+b+c+d\ne0\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

+ Nếu \(a+b+c+d=0\)

\(\Rightarrow\) hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!

ta có : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\Rightarrow\frac{\left(a+b\right)}{\left(d+c\right)}=\frac{\left(c+b\right)}{\left(d+a\right)}\)

\(\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}+1=\frac{\left(b+c\right)}{\left(d+a\right)}+1\)

Hay : \(\frac{\left(a+b+c+d\right)}{\left(c+d\right)}=\frac{\left(b+c+d+a\right)}{\left(d+a\right)}\)

- nếu a + b + c + d = 0 thì : c + d = d + a

\(\Rightarrow\)c = a

- Nếu a + b + c + d = 0 ( điều phải chứng minh ) 

24 tháng 6 2021

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)

<=> ad + a2 + bd + ab = bc + bd + c2 + cd

<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0

<=> ad + a2 + ab - bc - c2 - cd = 0

<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0

<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0

<=> ( a - c )( a + b + c + d ) = 0

<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)

24 tháng 6 2021

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)

TH1: \(a+b+c+d=0\Rightarrowđpcm\)

TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)

\(\Rightarrow a+b=b+c\)

\(\Rightarrow a=c\left(đpcm\right)\)

4 tháng 12 2019

a+b/b+c=c+d/d+a

=>(a+b)(d+a)=(b+c)(c+d)

=>ad+a^2+bd+ab=bc+bd+c^2+cd

=>ad+a^2+ab=c^2+bc+cd

=>bạn làm tiếp nhé

11 tháng 6 2015

cách 5;a/b=c/d suy ra ad=bc suy ra\(\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

cách 1 là bn kia làm rùi,chị chỉ làm bsung thêm thôi nha em .chỗ nào ko hiểu có thể hỏi chị