K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

x=6 thì y=15

x=-6 thì y=-15

18 tháng 11 2015

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

\(\Rightarrow xy=2k.5k=10.k^2=90\Rightarrow k^2=9\Rightarrow k=3hoặk=-3\)

* Khi k=3 \(\Rightarrow x=2.3=6;y=5.3=15\)

* Khi k=-3 \(\Rightarrow x=2.\left(-3\right)=-6;y=5.\left(-3\right)=-15\)

18 tháng 10 2016

1. Theo t/c của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)

\(\frac{x}{2}=9\Rightarrow x=9.2=18\)

\(\frac{y}{5}=9\Rightarrow y=9.5=45\)

Vậy x = 18 ; y = 45 

18 tháng 10 2016

sai rùi

11 tháng 10 2016

Nói tóm lại là:

@Nguyễn Ngọc Sáng làm sai

@Tuấn Anh Phan Nguyễn trình bày vậy k đc

11 tháng 10 2016

Ta có: \(\frac{x}{2}=\frac{y}{5}\) và x . y = 90

Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => x = 2k , y = 5k

Từ x . y = 90 => 2k . 5k = 90 => 10k2 = 90 => k2 = 9 => k = \(\pm3\)

* Với k = 3 thì a = 6 ; y = 15

* Với k = - 3 thì a = - 6 ; y = - 15

Vậy a = 6 ; y = 15 hoặc a = - 6 ; y = - 15

18 tháng 9 2017

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\) nên \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}\)

\(\Rightarrow\)\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

Vậy giá trị của mỗi tỉ số đó bằng \(\dfrac{1}{2}\)

18 tháng 9 2017

1)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\left(k\in Q\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

\(xy=90\) nên \(2k.5k=90\)

\(\Rightarrow10k^2=90\)

\(\Rightarrow k^2=9\)

\(\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=15\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-15\end{matrix}\right.\end{matrix}\right.\)

Vậy có 2 cặp số (x;y) thảo mãn là: (6; 15); (-6; -15)

30 tháng 7 2017

Đặt k = \(\dfrac{x}{4}=\dfrac{y}{7}\Rightarrow x=4k,y=7k\)

Từ x.y = 112, ta có: 4k.7k = 112

\(\Rightarrow\) \(28k^2\) = 112

\(\Rightarrow k^2=4\)

\(\Rightarrow\left[{}\begin{matrix}k=-2\\k=2\end{matrix}\right.\)

Có 2 trường hợp xảy ra:

TH1: k = -2

\(\Rightarrow x=-8,y=-14\)

TH2: k = 2

\(\Rightarrow x=8,y=14\)

Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-8\\y=-14\end{matrix}\right.\\\left\{{}\begin{matrix}x=8\\y=14\end{matrix}\right.\end{matrix}\right.\)

10 tháng 6 2017

\(\dfrac{x}{4}=\dfrac{y}{7}\)

\(\Rightarrow7.x=4.y\)

\(\Rightarrow x=\dfrac{4}{7}.y\)

\(x.y=112\)

hay \(\dfrac{4}{7}.y.y=112\)

\(y^2=196\)

\(\Rightarrow\left\{{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

Vậy \(y=14;x=8\)

\(y=-14;x=-8\)

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

5 tháng 7 2018

Bài 2: ( Mik chắc chắn là bạn ghi sai đề, phải là xy = 90 mới đúng)

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\\ \Rightarrow\dfrac{x^2}{2}=\dfrac{xy}{5}=\dfrac{90}{5}=18\\ \Rightarrow x^2=18\cdot2=36\\ \Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=15\\y=-15\end{matrix}\right.\)

Vậy có 2 giá trị của x và y ....

5 tháng 7 2018

Bài 1:

Đặt

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\\ \Rightarrow\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\\ \Rightarrow\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

1 tháng 1 2018

a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> ad = bc

Ta có : (a + 2c)(b + d)

= a(b + d) + 2c(b + d)

= ab + ad + 2cb + 2cd (1)

Ta có : (a + c)(b + 2d)

= a(b + 2d) + c(b + 2b)

= ab + a2d + cb + c2b

= ab + c2d + ad + c2b (Vì ad = cd) (2)

Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)

1 tháng 1 2018

Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)

Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)

=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0

=> x = y = z = t

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)

P = 1 + 1 + 1 + 1 = 4

TH2 : x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(t + x)

z + t = -(x + y)

t + x = -(y + z)

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)

P = (-1) + (-1) + (-1) + (-1)

P = -4

Vậy ...