Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia cả 2 vế cho y2, ta được:
294(x2/y2+2)=300(x2/y2-2)
<=> 6x2/y2=2.294+2.300=1188 => \(\frac{x^2}{y^2}\frac{1188}{6}=198\)
\(\frac{x^2+2y^1}{300}=\frac{x^2+2y^1}{294}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x^2+2y^1}{300}=\frac{x^2+2y}{294}=\frac{x^2+2y^1-x^2-2y^1}{300-294}=\frac{0}{6}=0\)
\(\Rightarrow x^2+2y=0\)
\(\Rightarrow x^2=-2y\)
Ta có:
\(\frac{x^2}{y^2}=\frac{-2y}{y^2}=\frac{-2}{y}\)
Áp dụng tính chất dãy tỉ số bằng nhau \(\Rightarrow\)\(\frac{x^2+2y^2}{300}\)=\(\frac{x^2-2y^2}{294}\)=\(\frac{x^2+2y^2+x^2-2y^2}{300+294}\)=\(\frac{2x^2}{594}\)=\(\frac{x^2}{297}\)
Lại có:\(\frac{x^2+2y^2}{300}\)=\(\frac{x^2}{297}\)=\(\frac{x^2+2y^2-x^2}{300-297}\)=\(\frac{2y^2}{3}\)
\(\Rightarrow\)3\(x^2\)=297.2\(y^2\)\(\Rightarrow\)3\(x^2\)=594\(y^2\)\(\Rightarrow\)\(\frac{x^2}{y^2}\)=\(\frac{594}{3}\)=198
Vì mình mới học lớp 6
Nên không biết nha
Chuc các bạn học giỏi
\(\frac{x^2+2y^2}{300}=\frac{x^2-2y^2}{294}=\frac{x^2+2y^2+x^2-2y^2}{300+294}=\frac{2x^2}{594}=\frac{x^2}{297}=\frac{x^2+2y^2-x^2+2y^2}{300-294}=\frac{4y^2}{6}\)
\(\Rightarrow\frac{x^2}{297}=\frac{4y^2}{6}=\frac{2y^2}{3}\Rightarrow\frac{x^2}{2y^2}=\frac{297}{3}=99\Rightarrow\frac{x^2}{y^2}=99:\frac{1}{2}=\frac{99}{2}\)
Vậy \(\frac{x^2}{y^2}=\frac{99}{2}\)
a) \(\dfrac{x}{27}=\dfrac{-2}{3,6}\)
=> x. 3,6 = 27. (-2)
=> x.3,6 = -54
x = (-54) : 3,6
x = -15
b) -0,52 : x = -9,36 : 16,38
- 0,52 : x = \(\dfrac{-4}{7}\)
x = \(\dfrac{-4}{7}\) . ( -0,52)
x = \(\dfrac{52}{175}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x^2-2y^2}{306}=\frac{x^2-2y^2}{294}=\frac{x^2+2y^2+\left(x^2-2y^2\right)}{306+294}=\frac{x^2+2y^2-\left(x^2-2y^2\right)}{306-294}\)
\(\Rightarrow\frac{x^2+2y^2+\left(x^2-2y^2\right)}{306+294}=\frac{x^2+2y^2-\left(x^2-2y^2\right)}{306-294}\)
\(\Rightarrow\frac{2x^2}{600}=\frac{4y^2}{12}\)
\(\Rightarrow\frac{x^2}{300}=\frac{y^2}{3}\)
\(\Rightarrow\frac{x^2}{y^2}=100\)
\(\Rightarrow\left(\frac{x}{y}\right)^2=100\)
\(\Rightarrow\left[\begin{array}{nghiempt}\frac{x}{y}=10\\\frac{x}{y}=-10\end{array}\right.\)
\(\dfrac{7x-3z}{5}=\dfrac{3y-5x}{7}=\dfrac{5z-7y}{3}\)
\(\Rightarrow\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)
\(=\dfrac{35x-15z+21y-35x+15z-21y}{25+49+9}\)
\(=\dfrac{0}{25+49+9}=0\)
\(\Rightarrow\left\{{}\begin{matrix}7x=3z\Rightarrow\dfrac{x}{3}=\dfrac{z}{7}\\3y=5x\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\\5z=7y\Rightarrow\dfrac{z}{7}=\dfrac{y}{5}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{3+5+7}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\\z=2.7=14\end{matrix}\right.\)
Tương tự
Ta có : \(\frac{x^2+2y^2}{360}=\frac{x^2-2y^2}{294}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2+2y^2}{360}=\frac{x^2-2y^2}{294}=\frac{x^2+2y^2+x^2-2y^2}{360+294}=\frac{x^2+2y^2-x^2+2y^2}{360-294}=\frac{2x^2}{654}=\frac{4y^2}{66}\)
\(\Rightarrow\frac{x^2}{327}=\frac{y^2}{16,5}\)
\(\Rightarrow\frac{x^2}{y^2}=\frac{327}{16,5}=\frac{218}{11}\)
\(\Rightarrow\left(\frac{x}{y}\right)^2=\frac{218}{11}\)
\(\Rightarrow\frac{x}{y}=\sqrt{\frac{218}{11}}\)
Vậy tỉ số \(\frac{x}{y}\) bằng \(\sqrt{\frac{218}{11}}\)
(số nó hơi kì nhỉ ^^)