K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$

Khi đó:

$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$

$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$

Từ $(1); (2)$ ta có đpcm.

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng tỉ lệ thức ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)

b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng tỉ lệ thức ta có "

\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Các câu còn lại bạn làm tương tự

21 tháng 11 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+5b}{2c+5d}\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-4b}{3c-4d}\)

\(\Rightarrow\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}=\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\left(dpcm\right)\)

21 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) \(\Rightarrow\dfrac{2bk+5b}{3bk-4b}=\dfrac{2dk+5d}{3dk-4d}\)

\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)

\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\) Đpcm.

23 tháng 9 2017

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\)\(\left(1\right)\)

\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)

\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

a) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Từ \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) \(\Rightarrow\dfrac{c-d}{c+d}=\dfrac{a-b}{a+b}\)

b) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\)

Từ \(\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\) \(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

11 tháng 12 2017

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

23 tháng 11 2017

*a/b=c/d=k=>a=bk;c=dk

Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3

Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3

=>2a+3b/2a-3b=2c+3d/2c-3d

*a/b=c/d=>a/c=b/d=k

=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)

k^2=a/c.b/d=ab/cd (2)

Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2

*a/b=c/d=>a/c=b/d=k=a+b/c+d

=>k^2=(a+b/c+d)^2

k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2

=>(a+b/c+d)^2=a^2+b^2/c^2+d^2

28 tháng 3 2018

Gọi \(\dfrac{a}{b}=\dfrac{c}{d}=k\).\(\Rightarrow a=bk,c=dk\)

a)Ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)(1)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}\dfrac{2k+3}{2k-3}\)(2)

Từ (1),(2)ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b)Ta có:\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(2)

Từ (1),(2) ta có:\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

c)Ta có:\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1), (2) ta có \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

5 tháng 6 2018

a, Vì \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)

Ta có :

\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b+a\right)\left(b-a\right)}{a^2+ab}=\dfrac{\left(b+a\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)

Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)

18 tháng 7 2018

(+) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

(+) \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (*)

\(\Leftrightarrow4ac+6bc-6ad-9bd=4ac-6bc+6ad-9bd\)

\(\Leftrightarrow12bc=12ad\Leftrightarrow bc=ad\) (đúng)

Vậy (*) đúng (đpcm)