Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk\) và \(c=dk\)
Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+b}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow c=-c\)
\(\Rightarrow c-\left(-c\right)=0\)
\(\Rightarrow c+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\)
\(\Rightarrow\) Đpcm.
\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc=>ab+ad=ab+bc\)
\(a\left(b+d\right)=b\left(a+c\right)\)
\(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
a, ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)
áp dụng tính chất dă y tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)
\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)
b, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)
áp dụng tính chất dă tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)
\(\Rightarrow\)\(a+b+c=a+b-c\)\(\Leftrightarrow\)\(c=0\)
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)
\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow c-\left(-c\right)=0\Rightarrow c+c=0\Rightarrow c=0\left(đpcm\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}=\dfrac{2b}{2b}=1\)\(\Rightarrow\dfrac{a+b+c}{a+b-c}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\) (đpcm)
ko thik surf trc khi ? đấy bn có ý gì ko nếu bn ko thik trả lời thì thôi mik ko ép chứ mik thik hỏi gì thì kệ mik mong Ace Legona hiểu cho.
a+b-c/a+b-c + 2c/a+b-c = a-b-c/a-b-c + 2c/a-b-c
suy ra 2c/a+b-c = 2c/a-b-c
Dấu = xảy ra khi c=0
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow\left(b+c-b+c\right)\left(b+c+b-c\right)=0\)
\(\Leftrightarrow4bc=0\)
Do b\(\ne\) 0\(\Rightarrow c=0\)
Vậy c=0 thì thỏa tỉ lệ thức (đcpcm)