Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5x-2y}{3x+4y}=\frac{3}{4}\Rightarrow9x+12y=20x-8y\)
\(\Rightarrow11x=20y\)
\(\Rightarrow\frac{x}{y}=\frac{20}{11}\)
\(\dfrac{7x-3z}{5}=\dfrac{3y-5x}{7}=\dfrac{5z-7y}{3}\)
\(\Rightarrow\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)
\(=\dfrac{35x-15z+21y-35x+15z-21y}{25+49+9}\)
\(=\dfrac{0}{25+49+9}=0\)
\(\Rightarrow\left\{{}\begin{matrix}7x=3z\Rightarrow\dfrac{x}{3}=\dfrac{z}{7}\\3y=5x\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\\5z=7y\Rightarrow\dfrac{z}{7}=\dfrac{y}{5}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{3+5+7}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\\z=2.7=14\end{matrix}\right.\)
Tương tự
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\2x-4z=0\\4y-3z=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)
Thay (1) vào P
=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)
=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)
=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)
\(\frac{5x-2y}{3x+4y}=\frac{3}{4}\Rightarrow\left(5x-2y\right).4-3\left(3x+4y\right)=0\)
\(\Rightarrow20x-8y-9x-12y=0\)
\(\Rightarrow11x-20y=0\)
\(\Rightarrow11x=20y\)
\(\Rightarrow\frac{x}{y}=\frac{20}{11}\)
từ tỉ lệ thức đã cho ta có;
4(5x-2y)=3(3x+4y)
20x-8y=9x+12y
11x-8y=12y
11x=20y
x/y=20/11
5x - 2y/3x + 4y = 3/4
=> (5x - 2y) × 4 = (3x + 4y) × 3
=> 20x - 8y = 9x + 12y
=> 20x - 9x = 12y + 8y
=> 11x = 20y
=> x/y = 20/11
từ tỉ lệ thức ta có
4(5x-2y)=3(3x+4y)
20x-8y=9x+12y
11x-8y=12y
11x=20y
x/y=20/11
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-4y-3y=3x\)
\(\Rightarrow12x-7y=3x\)
\(\Rightarrow12x-3x=7y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{9}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Ta có : \(\dfrac{5x-2y}{3x+4y}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(5x-2y\right)=3\left(3x+4y\right)\)
\(\Leftrightarrow20x-8y=9x+12y\)
\(\Leftrightarrow11x-20y=0\)
\(\Leftrightarrow11x=20y\)
Áp dụng tính chất tỉ lệ thức ta có :
\(11x=20y\Leftrightarrow\dfrac{x}{y}=\dfrac{20}{11}\)
Vậy .......
Ta có : \(\dfrac{5x-2y}{3x+4y}=\dfrac{3}{4}\)
\(\Rightarrow3\left(3x+4y\right)=4\left(5x-2y\right)\)
\(\Rightarrow9x+12y=20x-8y\)
\(\Rightarrow9x=20x-20y\)
\(\Rightarrow11x=20y\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{11}\)'\(\Rightarrow x:y=11:20=\dfrac{11}{20}\)