K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Mỗi tỉ số đã cho bằng \(\frac{a+b+c}{b+c+d}\). Tích của ba tỉ số đã cho bằng \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\).

Mặt khác tích đó cũng bằng : \(\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)

Vậy : ...

9 tháng 2 2019

xin lối phần 2 sai rồi các bạn ko cần làm phần 2 nha <3    :>>

7 tháng 7 2019

a)\(\frac{-15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\) 

  \(\frac{-5}{6}-x+\frac{2}{6}=\frac{25}{27}\)

  \(\frac{-1}{2}-x=\frac{25}{27}\) 

             \(x=\frac{-77}{54}\) 

Vậy............

b) \(\frac{-3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)

   \(\frac{-12}{20}-2x+\frac{1}{20}=\frac{15}{20}\) 

   \(\frac{-11}{20}-2x=\frac{15}{20}\)

                   \(2x=\frac{-13}{10}\) 

                  \(x=\frac{-13}{20}\) 

Vậy.............

1.

\(a,-\frac{15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)

\(-\frac{5}{6}-x+\frac{2}{6}=\frac{25}{27}\)

\(-\frac{1}{2}-x=\frac{25}{27}\)

\(x=-\frac{77}{54}\)

\(b,-\frac{3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)

\(-\frac{12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)

\(-\frac{11}{20}-2x=\frac{15}{20}\)

\(2x=-\frac{13}{10}\)

\(x=-\frac{13}{20}\)

2.

\(a,-\frac{5}{6}\)và \(1,2\)

\(=-\frac{5}{6}\)và \(\frac{12}{10}\)

\(=-\frac{50}{60}\)và \(\frac{72}{60}\)

Nếu như quy đồng 2 số lên thì ta đc \(-\frac{50}{60}< \frac{72}{60}\)

\(\Rightarrow-\frac{5}{6}\)\(< 1,2\)

\(b,\frac{15}{16}\)và \(\frac{17}{18}\)

Theo như những bài toán đã hc thìn ội dung ở cuối bài là phân số nào có tử bé hơn thì có phân số lớn hơn phân số có tử lớn hơn 

\(\Rightarrow\frac{15}{16}>\frac{17}{18}\)

\(c,\frac{1999}{2000}\)và \(\frac{2000}{2001}\)

Ta quy đồng 

Đc

\(\frac{3999999}{4002000}\)và \(\frac{4000000}{4002000}\)

\(\Rightarrow\frac{1999}{2000}< \frac{2000}{2001}\)

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! BÀI  6.Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.a) Chứng minh ΔAHB = ΔDBH.b) Chứng minh AB//HD.c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.d) Tính góc ACB , biết góc BDH= 350 .Bài 7 :Cho tam giác ABC cân...
Đọc tiếp

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! 

BÀI  6.

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 7 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

  1. Chứng minh : DB = EC.
  2. Gọi O là giao điểm của BD và  EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
  3. Chứng minh rằng : DE // BC.

Bài 8 :

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

  1. Chứng minh : CD // EB.
  2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF

Bài 9 :

Cho tam giác ABC vuông tại A có góc B=60 độ . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

  1. Tam giác  ACE đều.
  2. A, E, F thẳng hàng.

 

1
14 tháng 2 2016

moi hok lop 6 thoi

1 tháng 8 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a = bk,c = dk

Do đó \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)

Từ (1) và (2) => \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b) Vì \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

1 tháng 8 2020

a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(k\ne0\right)\)\(\Rightarrow a=ck\)\(b=dk\)

Ta có: \(\frac{2a+3b}{2a-3b}=\frac{2.ck+3.dk}{2.ck-3.dk}=\frac{k\left(2c+3d\right)}{k\left(2c-3d\right)}=\frac{2c+3d}{2c-3d}\)( đpcm )

b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)( đpcm )