Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)
\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)
\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)
=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)
b)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)
=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
a)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right).\)
c)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\) (1).
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a-5b}{2c-5d}=\frac{2a+5b}{2c+5d}.\)
\(\Rightarrow\frac{2a-5b}{2a+5b}=\frac{2c-5d}{2c+5d}\left(đpcm\right).\)
Chúc bạn học tốt!
b. Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k => a=bk; c=dk
Vế trái =\(\frac{a^2}{b^2}\)=\(\frac{b^2k^2}{b^2}\)=\(k^2\)(1)
Vế phải =\(\frac{a^2-ac}{b^2-bd}\)=\(\frac{b^2k^2-bk.dk}{b^2-bd}\)=\(\frac{k^2\left(b^2-bd\right)}{b^2-bd}\)=\(k^2\)(2)
từ (1) và (2) ta có\(\frac{a^2}{b^2}\)=\(\frac{a^2-ac}{b^2-bd}\)
b.Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k => a=bk; c=dk
Vế trái =\(\frac{5a+5b}{5b}\)=\(\frac{5bk+5b}{5b}\)=\(\frac{5b\left(k+1\right)}{5b}\)=k+1(1)
Vế phải =\(\frac{c^2+cd}{cd}\)=\(\frac{d^2.k^2+d^2.k}{d^2.k}\)=\(\frac{d^2.k\left(k+1\right)}{d^2.k}\)=k+1(2)
từ (1) và (2) ta có\(\frac{5a+5b}{5b}\)=\(\frac{c^2+cd}{cd}\)
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{2+4+3}=\dfrac{180}{9}=20\)
=>a=20; b=80; c=60
Bài 3:
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\left(\dfrac{b}{d}\right)^2\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2-b^2}{c^2-d^2}\)
c: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
a, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{3a+5b}{2a-7b}=\frac{3bk+5b}{2bk-7b}=\frac{b\left(3k+5\right)}{b\left(2k-7\right)}=\frac{3k+5}{2k-7}\) (1)
\(\frac{3c+5d}{2c-7d}=\frac{3dk+5d}{2dk-7d}=\frac{d\left(3k+5\right)}{d\left(2k-7\right)}=\frac{3k+5}{2k-7}\) (2)
Từ (1) và (2) suy ra đpcm
b,Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (3)
Lại có \(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (4)
Từ (3) và (4) suy ra đpcm