Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(1\right)\)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3b}\left(=\dfrac{2k+3}{2k-3}\right)\)
Áp dụng tính chất dãy tỉ số băng nhau,ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{2a}{2c}=\dfrac{3b}{3d}=>\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3d}{2c-3d}=>\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\left(đpcm\right)\)
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh
\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
Suy ra: \(\frac{2a+3b}{2a-3b}=\frac{2.bk+3b}{2.bk-3b}=\frac{b.\left(2k+3\right)}{b.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)
\(\frac{2c+3d}{2c-3d}=\frac{2.dk+3d}{2.dk-3d}=\frac{d.\left(2k+3\right)}{d.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)
Vậy \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{2a}{2c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
=>\(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)=>\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Vậy\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
\(\Rightarrow\frac{a}{2a-3b}=\frac{b.k}{2b.k-3b}=\frac{b.k}{\left(2k-3\right)b}=\frac{k}{2k-3}\left(1\right)\)
\(\frac{c}{2c-3d}=\frac{d.k}{2d.k-3a}=\frac{d.k}{\left(2k-3\right)d}=\frac{k}{2k-3}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{2a-3b}=\frac{c}{2c-3d}\)
Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{2a}{2c}=\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{3c-3d}\)
Vậy \(\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\) (ĐPCM)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)(đpcm)
Đề bảo là bằng 2a+3b/2a-3b=2c+3d/2c-3d mà bạn