K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)

=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)

=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)

5 tháng 10 2015

Câu 2 :

Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

1 tháng 12 2015

Có: \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2-b^2}{c^2-d^2}\)

=> \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2-b^2}{c^2-d^2}\)(Đpcm)

20 tháng 8 2016

b) ab(c^2+d^2)=ab.c^2+ab.d^2=(a.c)(b.c)+(a.d)(b.d)
cd(a^2+b^2)=cd.a^2+cd.b^2=(c.a)(d.a)+(c.b)(d.b)
(a.c)(b.c)+(a.d)(b.d)=(c.a)(d.a)+(c.b)(d.b) vì mỗi vế đều bằng nhau