K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

Cho tam giác ABC cân tại A, trung tuyến AM, O là trung điểm của AM. Tia BO cắt AC tại D, CO cắt AB tại E. Cho biết diện tích tam giác ADE=a^2

Tính diện tích tam giác ABC

9 tháng 4 2017

a AM.AB =AN.AC(=AH2)

b, AH=MN=2(do AMHN là hình chứ nhật)

tam giác AMN đồng dạng với ABC => tỉ số diện tích 2 tam giác là MN2/BC2=22/52=4/25
mà diện tích AMHN=2 lần diện tích AMN=> Diện tích AMHN =8/25 diện tích ABC

Tính được diện tích ABC => diện tích AMHN

Sửa đề: HM vuông góc với AB

a)

Sửa đề: Chứng minh \(AM\cdot AB=AN\cdot AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được: 

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được: 

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)(đpcm)

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

b: Giả sử AB<AC

Đặt HB=x; HC=y

Theo đề, ta có: x+y=15 và xy=36

=>x=3 và y=12

=>AB=căn 3*15=3căn 5cm; AC=căn 12*15=6*căn 5(cm)

AM=AH^2/AB=6^2/3*căn 5=12/căn 5(cm)

AN=AH^2/AC=6^2/6căn 5=6/căn 5(cm)

S AMHN=AM*AN=72/5cm2

28 tháng 10 2019

Xét tứ giác AMHN có
góc A = 90°
Góc M =90° ( vì HM vông góc AB)
Góc N=80°( vì HN vuông góc với AC)
=> Tứ giác AMHN là hình chữ nhật
=> AH=MN

19 tháng 3 2019

a, AM.AB=AN.AC(=AH2)

b,AH= MN ( AMHN hình chữ nhật)

TAm giác AMN ~ ABC

=> Tỉ số diện tích 2 tam giác là \(\frac{MN^2}{BC^2}\)=\(\frac{2^2}{5^2}\)=\(\frac{4}{25}\)

=> Tính đc diện tích ABC

=> S AMHN =...

23 tháng 12 2023

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Xét tứ giác AHKC có

I là trung điểm chung của AK và HC

=>AHKC là hình bình hành

=>AC//KH

c: Ta có: AC//HK

AC//HM

HK,HM có điểm chung là H

Do đó: K,H,M thẳng hàng

Ta có: AMHN là hình chữ nhật

=>\(\widehat{NAH}=\widehat{NMH}\)

mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)

nên \(\widehat{NMH}=\widehat{CKH}\)

Xét tứ giác MNCK có CN//MK

nên MNCK là hình thang

Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)

nên MNCK là hình thang cân

d: Ta có: AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Xét ΔCAH có

CO,AI là các đường trung tuyến

CO cắt AI tại D

Do đó: D là trọng tâm của ΔCAH

=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)

=>AK=3AD

a: XétΔAHB vuông tại H và ΔCAB vuông tại A có

góc CBA chung

Do đo: ΔAHB\(\sim\)ΔCAB

Suy ra: BA/BC=BH/BA

hay \(BA^2=BH\cdot BC\)

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)