\(\widehat{BAC}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

b: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

c: AC-AB=AE+EC-AD+DB

=2BD

1 tháng 7 2018

â)xét tam giác AMBvà tam giác AMC

AB=AC( gt)

AM chung

MB=MC ( M là trung điểm của BC )

=> tam giác AMB= tam giác AMC ( c.c.c)

=> góc AMB= góc AMC ( 2 góc tương ứng )

mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )

=> góc AMB= góc AMC=90O

=> AM vuông góc với BC

b) xét tam giác ADF và tam giác ADE

DF=DE ( gt)

góc ADF= góc CDE ( 2 góc đối đỉnh )

AD=CD ( D là trung điểm của AC)

=> tam giác ADF = tam giác ADE ( c.g.c)

=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE

=.> AF// CE

4 tháng 5 2018

vì AM là tia phân giác đồng thời là tia phân giác của \(\widehat{DAE}\)

⇒ΔADE cân tại E
\(\widehat{D}=\widehat{AED}\)(1)

vì BF \\ CA ( GT )

\(\widehat{BFD}=\widehat{AED}\)(2 góc đồng vị bằng nhau)(2)

từ (1) và (2) ⇒ \(\widehat{D}=\widehat{AFD}\)

⇒ΔBDF cân tại B

tui ko quen kẻ hình trên máy tính bucqua

4 tháng 5 2018

vì AC \\ BF (câu a)

\(\widehat{FBM}=\widehat{ECM}\)(2 góc so le trong)

xét ΔBMF và ΔCME có

\(\widehat{FBM}=\widehat{ECM}\)(CMT)

\(\widehat{BMF}=\widehat{CME}\)(2 góc đối đỉnh)

BM = MC(M là trung điểm của BC)

⇒ΔBMF=ΔCME(G.C.G)

⇒EM=FM(2 cạnh tương ứng)

⇒M là trung điểm của FE