K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

xét ΔABH và ΔACH có:

\(\widehat{ACB}\)=\(\widehat{ABC}\)(ΔABC cân tại A)

\(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của\(\widehat{BAC}\))

AB=AC(ΔABC cân tại A)

⇒ΔABH=ΔACH(g-c-g)

xét ΔABM và ΔCEM có:

\(\widehat{AMB}\)=\(\widehat{EMC}\)(2 góc đối đỉnh)

AM=MC(M là trung điểm của AC)

BM=ME(giả thuyết)

⇒ΔABM=ΔCEM(c-g-c)

\(\widehat{BAM}\)=\(\widehat{MCE}\)(2 góc tương ứng)

⇒CE//AB(điều phải chứng minh)

\(\widehat{BAH}\)=\(\widehat{CKH}\)(2 góc sole trong)(1)

Mà \(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))(2)

Từ (1) và (2) ⇒\(\widehat{CAH}\)=\(\widehat{CKH}\)

⇒ΔACK cân tại C(điều phải chứng minh)

vì AH là tia phân giác của \(\widehat{BAC}\)

Mà ΔABC cân tại A

⇒AH là đường trung tuyến

Mặc khác M là trung điểm của AC nên BM là đường trung tuyến

Mà G là giao điểm của BM và AH 

⇒G là trọng tâm của ΔABC

xét ΔABH và ΔKCH có:

BH=CH(AH là đường trung tuyến)

\(\widehat{ABH}\)=\(\widehat{KCH}\)(2 góc sole trong)

\(\widehat{AHB}\)=\(\widehat{KHC}\)=\(90^o\)

⇒ΔABH=ΔKCH(g-c-g)

Mà ΔABH=ΔACH

⇒ΔKCH=ΔACH

xét ΔAHC có:

AH+HC>AC(bất đẳng thức tam giác) 

Mà AH=3GH; AC=CK(ΔKCH=ΔACH)

⇒3GH+HC>CK(điều phải chứng minh) 

28 tháng 4 2016

a) Xét tam giac ABH vuông tại H và tan giác ACH vuông tại H ta có

AB=AC ( tam giac ABC cân tại A)

AH=AH ( cạnh chung)

-> tam giac ABH= tam giac ACH ( ch-cgv)

-> BH= CH ( 2 cạnh tương ứng)

b) Xét tam giác AMB và tam giac CME ta có

AM=MC ( M là trung điểm AC)

BM=ME(gt)

goc AMB = goc CME (2 góc đối đỉnh)

=> tam giac AMB= tam giac CME (c-g-c)

-> goc BAM= góc ECM (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong nên CE//AB

c) ta có:

goc BAH= goc AKC ( 2 góc sole trong và CE//AB)

goc BAH= goc CAH ( tam giac ABH = tam giac ACH)

-> goc AKC= góc CAH

=> tam giac ACB cân tại C

d) ta có : BH=CH (cm a)

=> H là trung điểm BC 

Xét tam giac ABC ta có

BM là đường trung tuyến ( M là trung diểm AC)

AH là đường trung tuyến ( H là trung điềm BC)

BM cắt AH tại G (gt)

-> G là trọng tâm tam giác ABC

-> GH=1/3 AH

-> 3GH=AH

ta có

AH+HC > AC ( bất đẳng thức trong tam giác AHC)

AH=3GH (cmt)

AC=CK( tam giac ACK cân tại C)

-> 3GH +HC >CK

28 tháng 4 2016

90 A B C H M E G

A) Xét hai tam giác vuông :

  AB = AC ( gt )

  AH chung

=> BẰNG NHAU

=> BH = CH ( vì hai cạnh tương ứng )

B) K BK

C) PHẢI CHỨNG MINH HAI CẠNH BẰNG NHAU

14 tháng 4 2023

a; 

có Abc là tam giac cân taji A (gt)

=> AH là đg cao và là ddg trùng tuyến và là đg phan giác 

=> H là trung điểm của BC

Xét tam giác ABH va ACH có

1: có AH chung

2: HB=HC( CMT)

3: AB=AC (2 cạnh bên của tam giác ABC cân tại a)

=> 2 tam giác bằng nhau theo TH c.c.c

b;

xét 2 tam giác: AMB va CME có

AM=MC ( BM là trung tuyến=>m là trung điểm AC)

MB=ME (GT)

Góc AMB=Goc AMC (2 góc đối đỉnh)

=> 2tam giác bằng nhau theo TH (CGC)

=> góc CEm= góc ABM (2 góc tương ung trong 2 tam giác bằng nhau)

=> AB//CE (2 đg thằng có 2 góc đồng vị bằng nhau)

c;

có AB//CE (CMt)

=> Góc ABC= góc BCK (2 góc so le trong)

xet 2 tam giác vuông ACH va KCH có

HC chung

goc KCH=ACH (cùng bằng góc ABC)

=> 2 tam giác bằng nhau

=>HK=AH (1)

xet Tam gioác ABC có am là trung tuyên tại M; BM là trung tuyến

=> G là trọng tâm

=> HG= 1/3 AH (tinh chât trọng tâm của tam giác) (2)

tù 1 và 2 => HG=1/3 HK => HK=3HG(3)

Trong Tam giác KHC có 

CK< HC+HK (4)

Từ 3 và 4 => KC< HC+3HG (dieu phai chung minh)

 

1 tháng 4 2019

a) cm tg ABM = tg ACM moi dung phai ko ban

13 tháng 4 2017

A B C H M G D

a) xét tam giác vuông AHB và tam giác vuông AHC có:

AH chung

góc B = góc C (tam giác ABC cân)

=> \(\Delta ABH=\Delta ACH\left(ch-gn\right)\)

b) ta có: AH là đường cao nên AH cũng là trung tuyến

hay BH=CH

lại có: AM là trung tuyến

=> AM=MC

mà 2 đường giao nhau tại G nên G là trọng tâm của \(\Delta ABC\)