Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x^2-5x+3\right)\left(x^2-4x+3\right)=0\)
=>(2x-3)(x-1)(x-3)(x-1)=0
=>x=1; x=3;x=3/2
=>A={1;3;3/2}
b: \(\left\{{}\begin{matrix}x+3< 2x+4\\5x-3< 4x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x< 1\\x< 2\end{matrix}\right.\Leftrightarrow-1< x< 2\)
mà x là số tự nhiên
nên B={0;1}
a: \(\left(\dfrac{1}{2}\right)^n>=\dfrac{1}{32}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n>=\left(\dfrac{1}{2}\right)^5\)
=>n<=5
=>M={1;1/2;1/4;1/8;1/16;1/32}
b: \(x^2+x+3=0\)
\(\text{Δ}=1^2-4\cdot1\cdot3=1-12=-11< 0\)
=>Phương trình vô nghiệm
=>\(C=\varnothing\)
Ta có : \(2x^2+3x-2=0\)
=> \(x^2+\frac{3}{2}x-1=0\)
=> \(x^2+\frac{2.x.3}{4}+\frac{9}{16}-\frac{25}{16}=0\)
=> \(\left(x+\frac{3}{4}\right)^2=\left(\frac{5}{4}\right)^2\)
=> \(\left\{{}\begin{matrix}x+\frac{3}{4}=\frac{5}{4}\\x+\frac{3}{4}=-\frac{5}{4}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-2\end{matrix}\right.\)
Vậy B = { 1/2; -2 }
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài
Giải phương tình: \(x+\sqrt{2x-1}=2\left(x-3\right)^2\)
Điều kiện: \(x\ge\dfrac{1}{2}\)
\(PT\Leftrightarrow\sqrt{2x-1}-3=2x^2-13x+15\\ \Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}-3}=\left(x-5\right)\left(2x-3\right)\\ \Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}-2x+3\right)=0\\ \Leftrightarrow\begin{matrix}x=5\\\dfrac{2}{\sqrt{2x-1}+3}=2x-3\left(1\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow\left(2x-3\right)\left(\sqrt{2x-1}+3\right)=2\)
Đặt \(t=\sqrt{2x-1},t>0\) phương trình trở thành \(\left(t^2-2\right)\left(t+3\right)=2\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(L\right)\\t=\dfrac{-1-\sqrt{17}}{2}\\t=\dfrac{-1+\sqrt{17}}{2}\end{matrix}\right.\left(L\right)\)
Với \(t=\dfrac{-1+\sqrt{17}}{2}\) ta có \(\sqrt{2x-1}=\dfrac{-1+\sqrt{17}}{2}\)
\(\Leftrightarrow2x-1=\dfrac{9-\sqrt{17}}{2}\)
\(\Leftrightarrow x=\dfrac{11-\sqrt{17}}{4}\)
Vậy \(E=\left\{5;\dfrac{11-\sqrt{17}}{4}\right\}\)