K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 10 2022
a: \(A=\left\{0;\dfrac{3}{2};-2;-\dfrac{1}{2}\right\}\)
b: {0;-2}
c: Vì A có 4 phần tử nên A có 2^4=16 tập con
d: Số tập con có 3 phần tử là: \(C^3_4=4\left(tập\right)\)
MD
3
Giải phương tình: \(x+\sqrt{2x-1}=2\left(x-3\right)^2\)
Điều kiện: \(x\ge\dfrac{1}{2}\)
\(PT\Leftrightarrow\sqrt{2x-1}-3=2x^2-13x+15\\ \Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}-3}=\left(x-5\right)\left(2x-3\right)\\ \Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}-2x+3\right)=0\\ \Leftrightarrow\begin{matrix}x=5\\\dfrac{2}{\sqrt{2x-1}+3}=2x-3\left(1\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow\left(2x-3\right)\left(\sqrt{2x-1}+3\right)=2\)
Đặt \(t=\sqrt{2x-1},t>0\) phương trình trở thành \(\left(t^2-2\right)\left(t+3\right)=2\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(L\right)\\t=\dfrac{-1-\sqrt{17}}{2}\\t=\dfrac{-1+\sqrt{17}}{2}\end{matrix}\right.\left(L\right)\)
Với \(t=\dfrac{-1+\sqrt{17}}{2}\) ta có \(\sqrt{2x-1}=\dfrac{-1+\sqrt{17}}{2}\)
\(\Leftrightarrow2x-1=\dfrac{9-\sqrt{17}}{2}\)
\(\Leftrightarrow x=\dfrac{11-\sqrt{17}}{4}\)
Vậy \(E=\left\{5;\dfrac{11-\sqrt{17}}{4}\right\}\)