K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

A B C M H N

a) Tứ giác ANCM có hai đường chéo MN và AC cắt nhau tại H

mà H là trung điểm AC và H alf trung điểm MN

=> ANCM là hình bình hành

b) M là trung điểm BC, H là trung điểm AC => MH là đường trung bình của tam giác ABC

=> MH // AB  mà AB \(\perp\)AC => MH\(\perp\)AC hay MN\(\perp\)AC 

=> Hình bình hành ANCM là hình thoi

AB= 4cm , AC= 3cm, tam giác ABC vuông tại A

Áp dụng định lí Pi ta go

=> BC=5 cm

Tam giác ABC vuông tại A có AM là đường trung tuyến => AM=1/2BC=2,5 cm , Các cạnh của hình thoi bằng nhau và bằng 2,5 cm

a: AM=BC/2=3cm

b: Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

MA=MC

Do đó: AMCN là hình thoi

22 tháng 12 2016

a)    do am là đường trung tuyến

=>m là trung điểm bc

Mà m là trung điểm của ad (do d là điểm đối xứng với a qua m)

=>ad giao với ad tại m là trung điểm mỗi đường

=>abcd là hbh

b)   Giả sử abcd là hcn

=>góc a=90 độ

=>tam giác abc vuông tại a

Vậy tam giác abc là tam giác vuông tại a thìabcd là hcn

c) gọi mn giao ac tại e

=>e là tđ của ac

e là tđ của mn

=>anmc là hbh

ta có am=mc(vì am là đường trung tuyến trong tam giác vuông)

=>amnc là hình thoi

cm: abmn là hbh

=>ab=mn 

diện tích amnc=ac*mn/2=4*3/2=6

    

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A

a: Xét ΔABC có 

M là trung điểm của BC

I là trung điểm của AC

Do đó: MI là đường trung bình

=>MI//AC và MI=AC/2

=>MI//AK và MI=AK

=>AKMI là hình bình hành

mà AK=AI

nên AKMI là hình thoi

b: Xét tứ giác AMCN có 

I là trung điểm của AC

I là trung điểm của MN

Do đó: AMCN là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCN là hình chữ nhật

Xét ΔABC có 

K là trung điểm của AB

I là trung điểm của AC

Do đó: KI là đường trung bình

=>KI//BC và KI=BC/2

hay KI//MC và KI=MC

=>MKIC là hình bình hành

c: Xét tứ giác ABMN có 

AN//BM

AN=BM

Do đó: ABMN là hình bình hành

Suy ra: Hai đường chéo AM và BN cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của AM

nên E là trung điểm của BN