Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên
bạn tự vẽ hình nka !!!
a) , b) Theo định lí Py - ta - go trong \(\Delta ABC\)vuông tại A , ta có :
\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)
Xét \(\Delta AHB\)và \(\Delta CAB\)có :
\(\widehat{ABC}\)chung ; \(\widehat{BHA}=\widehat{BAC}=90\)độ
\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)
\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)
\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)
c) ta có : \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\) ( do AM là đường trung tuyến ứng với cạnh huyền BC )
Theo định lí Py - ta - go trong \(\Delta AHM\)vuông tại H , ta có :
\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)
\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)
TK CKO MK NKA !!!
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB\cdot AC=BC\cdot AH\)
Áp dụng hệ thức lượng ta có: \(AB^2=BH.BC;\) \(AC^2=HC.BC\)
=>\(\left(\frac{AB}{AC}\right)^2=\frac{BH.BC}{CH.BC}=\frac{BH}{HC}\); TA LẠI CÓ: \(\frac{AB}{AC}=\frac{3}{7}\Leftrightarrow\left(\frac{AB}{AC}\right)^2=\frac{9}{49}\Leftrightarrow\frac{BH}{CH}=\frac{9}{49}\Rightarrow BH=\frac{9}{49}.CH\)
VẪN DÙNG HỆ THỨC LƯỢNG TA CÓ:
\(AH^2=HB.HC\Leftrightarrow HB.HC=42^2=1764\Leftrightarrow\frac{9}{49}CH.CH=1764\Leftrightarrow CH=98\Leftrightarrow BH=18\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>AB2=BH.BC; AC2=HC.BC
=>(ABAC )2=BH.BCCH.BC =BHHC ; TA LẠI CÓ:
A B H C
Áp dụng hệ thức cạnh và đường cao :
\(BC.BH=AB^2=15^2=225\left(1\right)\)
Mặt khác : BC = BH + HC
\(\Rightarrow BC-BH=HC=16\)
\(\Rightarrow BH=BC-16\)
Thay vào ( 1 ) ta có :
\(BC.\left(BC-16\right)=225\)
\(\Leftrightarrow BC^2-16BC-225=0\)
\(\Leftrightarrow BC^2-25BC+9BC-225=0\)
\(\Leftrightarrow BC\left(BC-25\right)+9\left(BC-25\right)=0\)
\(\Leftrightarrow\left(BC-25\right)\left(BC+9\right)=0\)
Mà BC > 0 \(\Rightarrow BC=25\left(cm\right)\)
Áp dụng định lý Pytago :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
Áp dụng hệ thức cạnh và đường cao :
\(AB.AC=BC.AH\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{15.20}{25}=12\left(cm\right)\)
Chúc bạn học tốt !!!