Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABCΔABC có AB=AC.
⇒C<B
Xét ΔABH&ΔACHΔABH&ΔACH vuông tại H.
=> ABHˆ+BAHˆ=90o
ACHˆ+CAHˆ=90o
mà Cˆ<Bˆ⇒BAHˆ<CAHˆ
a)Vì AB=AC => tam giác ABC cân tại A
Xét tam giác ABH và tam giác ACH:
ta có AB=AC
B=C(tam giác abc cân tại A)
AH chung
=>tam giác ABH=tam giác ACH(c.g.c)
=>HB=HC(2 cạnh tương ứng)
b)Vì tam giác ABH=tam giác ACH
=>A1=A2
=>AH là tia phân giác BAC
còn lại bạn tự làm nha mình chịu rồi:)
TA CO:tam giac ABH vuong tai H(AH vuong goc BC)
=>AH^2 + BH^2=AB^2
=>AH^2+4^2=5^2
=>AH^2=9
=>Ma AH>o
NenAH=3.
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
A B C H D E
a, xét tam giác AHB và tam giác AHC có : AH chung
AB = AC do tam giác ABC cân tại A (gt)
^AHB = ^AHC = 90
=> tam giác AHB = tam giác AHC (ch-cgv)
=> HB = HC (Đn)
b, HB = HC (câu a)
HB + HC = BC
BC = 8 cm (gt)
=> HB = 4
Xét tam giác AHB vuông tại H => AH^2 + HB^2 = AB^2 (Pytago)
AB = 5cm (gt)
=> AH^2 = 5^2 - 4^2
=> AH = 3 do AH > 0
c, xét tam giác BHD và tam giác CHE có : HB = HC (câu a)
^BDH = ^CEH = 90
^ABC = ^ACB do tam giác ABC cân tại A (gt)
=> tam giác BHD = tam giác CHE (ch-gn)
=> HD = HE (đn)
=> tam giác HDE cân tại H (đn)
b, tam giác BHD vuông tại D
=> DH < HB
HB = HC (câu a)
=> HD < HC
GIẢI NHƯ THẾ NÀO HẢ BẠN?
các bạn giúp mình với mình vừa mới học dạng này, làm đầy đủ mình tick cho