Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: D nằm trên AC sao cho AD=1/3AC
Vẽ DE//AB(E thuộc BC)
Xét ΔCAB có DE//AB
=>DE/AB=CD/CA=2/3
=>DE/18=2/3
=>DE=12(cm)
A B C 30 40 D E 10
Ta có : DC = AC - AD = 40 - 10 = 30 cm
Vì DE // AB Theo hệ quả Ta lét ta có :
\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow\dfrac{30}{40}=\dfrac{DE}{30}\Rightarrow DE=\dfrac{30.30}{40}=\dfrac{900}{40}=22,5\)cm
Nối AF ta nhận thấy AE cũng bằng đường cao của tam giác FAB ( vì EF song song với AB).
Nối AF ta nhận thấy AE cũng bằng đường cao của tam giác FAB ( vì EF song song với AB).
Theo đầu bài: AF = 1 2 E C hay A E = 1 3 A C = 12 3 = 4 c m
Vậy S F A B = 18 x 4 2 = 36 ( c m 2 )
S A B C = 18 x 12 2 = 108 ( c m 2 ) S F A C = 108 − 36 = 72 ( c m 2 )
Nên suy ra: E F = 72 x 12 2 = 12 ( c m ) vì EF song song với AB nên EF chính là đường cao của tam giác FAC. Vậy EF = 12(cm).
Vì EF song song với AB nên EF chính là đường cao của tam giác FAC