Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Bài này mk biết vẽ vs lại làm nek !
Mk sẽ cho bn link bài làm chụp từ word : file:///D:/Van%20Ban/Downloads/1519470315_1491468758_6.jpg
Đúng lun ^^
๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ): Link đó không vào được nhé! Link đó xuất phát từ ổ D máy tính bạn (hình như vậy,nhìn cái chữ file:///D: thấy giống lắm nên nó thuộc quyền sở hữu cá nhân của máy bạn. Do đó bạn đưa link này là vô ích và nó giống như spam vậy đó.
A C B D F I G H K L 1 2 3 4 1 2 E 1 2 1
Lấy điểm L sao cho A là trung điểm LB thì 2 tam giác vuông\(\Delta CAL=\Delta CAB\left(2cgv\right)\)
=> CL = CB mà BC = 2AB ; LB = 2AB nên BC = LB => CL = LB = CB =>\(\Delta CLB\) đều\(\Rightarrow\widehat{ABC}=60^0\)
\(\Delta ABC\)vuông tại A có\(\widehat{ACB}=90^0-\widehat{ABC}=30^0\Rightarrow\widehat{C_2}=\frac{30^0}{3}=10^0\Rightarrow\widehat{C_3}=20^0\)
Ta chứng minh được 2 cặp tam giác vuông\(\Delta CKH=\Delta CKF\left(2cgv\right);\Delta CIF=\Delta CIG\left(2cgv\right)\)
=> CH = CG (1)(vì CH = CF ; CF = CG) ;\(\widehat{C_1}=\widehat{C_2};\widehat{C_3}=\widehat{C_4}\)
\(\Rightarrow\widehat{HCG}=\widehat{C_1}+\widehat{C_2}+\widehat{C_3}+\widehat{C_4}=2\left(\widehat{C_2}+\widehat{C_3}\right)=2\widehat{ACB}=60^0\)(2)
Từ (1) và (2),ta có\(\Delta HCG\)đều nên\(\widehat{G_1}=60^0\)
\(\Delta FCG\)cân tại C (CF = CG) có\(\widehat{FCG}=\widehat{C_3}+\widehat{C_4}=2\widehat{C_3}=40^0\Rightarrow\widehat{FGC}=\frac{180^0-40^0}{2}=70^0\)
\(\Rightarrow\widehat{G_2}=\widehat{CGF}-\widehat{G_1}=70^0-60^0=10^0\)
\(\widehat{B_1}=\frac{\widehat{ABC}}{3}=20^0\Rightarrow\widehat{B_2}=\widehat{ABC}-\widehat{B_1}=40^0\)
\(\widehat{DFG}=\widehat{I_1}+\widehat{B_2}=90^0+40^0=130^0\)(\(\widehat{DFG}\)là góc ngoài\(\Delta FIB\)).\(\Delta DFG\)có :
\(\widehat{FDG}=180^0-\widehat{DFG}-\widehat{G_2}=180^0-130^0-10^0=40^0\)
\(\Delta ADB\)vuông tại A có\(\widehat{ADB}=90^0-\widehat{B_1}=70^0\).
Ta chứng minh được 2 tam giác vuông\(\Delta DKH=\Delta DKF\left(2cgv\right)\)nên\(\widehat{HDK}=\widehat{ADB}\)
\(\Rightarrow\widehat{HDG}=\widehat{HDK}+\widehat{ADB}+\widehat{FDG}=70^0+70^0+40^0=180^0\)
Vậy H,D,G thẳng hàng
a) Vì BC=2AB nên:\(\widehat{ABC}=2\widehat{ACB}\) mà \(\Delta ABC\) vuông nên \(\widehat{ABC} +\widehat{ACB}=90^o\)
\(\Rightarrow\)\(\widehat{ABC}=60^o,\widehat{ACB}=30^o\)
Suy ra:
\(\widehat{ABD}=20^o,\widehat{ACE}=10^o,\widehat{ECB}=20^o\).
C thuộc đường trung trực của của FH và FG nên CH=CG. Tam giác CGH cân tại C.
\(\widehat{GCH}=\widehat{GCF}+\widehat{FCH}=2\widehat{ACB}=60^o\)
Vậy tam giác GCH là tam giác đều, Do đó \(\widehat{CHG}=60^o(1)\)
\(\Delta CDH=\Delta CDF\)(c-g-c),suy ra \(\widehat{CHD}=\widehat{CFD}\)
tam giác vuông ABD vuông ở A có \(\widehat{ABD}=20^o\) nên \(\widehat{ADB}=70^o\) , suy ra \(\widehat{FDC}=110^o\) vì thế \(\widehat{DFC}=180^o-110^o-10^o=60^o\).vậy \(\widehat{CHD }=60^o(2)\)
từ (1) và (2) ta suy ra ba điểm M,D,C thẳng hàng
b) Gọi S là giao điểm các phân giác của tamgiacs BFC.ta dễ dàng chwungs minh được \(\widehat{EFB}=\widehat{BFS}=\widehat{SFC}=\widehat{DFC}=60^o\).
\(\Delta BFE=\Delta BFS(g-c-g)\) suy ra FE=FS(hai cạnh tương ứng)
\(\Delta CFS=\Delta CFD(g-c-g)\) suy ra FS=FD
từ hai chứng minh trên suy ra FE=FD.vậy tam giác EFD cân ở F