Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F A B C D F A B C D E F H K a. CM AB=AF
Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF
Xét tam giác AEB và tam giác AEF có
\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)
AE chung
\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)
=> tam giác AEB=tam giác AEF (g.c.g)
=>AB=AF(2 cạnh tương ứng)
b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)
xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt)
=>HFKD là hình bình hành (dhnb)
Nên DH=FK,DH//FK (t/c)
c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết )
a)Xét tam giác ABH có: HBA + BAH + BHA = 180 (Tổng ba góc trong một tam giác)
\(\implies\) 60 + BAH + 90 =180
\(\implies\) BAH = 30
b) Xét tam giác AHI và tam giác ADI có :
AH = AD (gt)
AI chung
HI=DI (gt)
\(\implies\) tam giác AHI = tam giác ADI (c-c-c)
\(\implies\) AIH = AID (hai góc tương ứng)
Mà AIH + AID = 180 (hai góc kề bù ) (2)
\(\implies\) AIH + AIH =180
\(\implies\) 2.AIH = 180
\(\implies\) AIH = 90(1)
Từ (1);(2) \(\implies\) AIH = AID = 90
\(\implies\) AI vuông góc với HD
c)Ta có:HAI = DAI (tam giác AHI = tam giác ADI)
Hay HAK = DAK
Xét tam giác AHK và tam giác ADK có :
AH = AD (gt)
AK chung
HAK = DAK (cmt)
\(\implies\) tam giác AHK = tam giác ADK (c-g-c)
+)Ta có:BAH + HAC = BAC
\(\implies\) BAH + HAC = 90
\(\implies\) 30 +HAC =90
\(\implies\) HAC = 60
Hay HAD =60
\(\implies\) HAK + DAK =60
Mà : HAK = DAK (cmt)
\(\implies\) HAK + HAK =60
\(\implies\) 2 HAK = 60
\(\implies\) HAK = 30
Xét tam giác vuông BHA và tam giác giác vuông KHA có:
HA chung
BAH = KAH =30 (cmt)
\(\implies\) tam giác vuông BHA = tam giác vuông KHA (cạnh góc vuông - góc nhọn kề)
\(\implies\) BH = KH (hai cạnh tương ứng)
\(\implies\) H là trung điểm của BK
A B C D K M Q
a) b) cậu biết làm rồi nhé
c) Vì K là trung điểm cạnh BC ( gt )
\(\Rightarrow DK\)là trung tuyến cạnh BC.
Vì A là trung điểm của BD
\(\Rightarrow AC\)là trung tuyến cạnh BD
mà DK cắt AC tại M
\(\Rightarrow M\)là trọng tâm của tam giác BCD.
\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)
( BẠN TỰ THAY VÀO NHA )
d) Vì tam giác BCD cân ( cmt )
\(\Rightarrow BC=DC\left(đn\right)\)
Mà AC là trung tuyến của tam giác BCD ( cmt )
\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)
\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)
Xét tam giác BCM và tam giác DCM có:
\(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)
Xét tam giác BMK và tam giác DMQ có:
\(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\)
\(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)
Vì M là trọng tâm của tam giác BCD (cmt) (4)
mà DK là trung tuyến của tam giác BCD (cmt)
\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)
\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)
Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng
a, xét 2 tam giác vuông AEC và AED có:
AC=AD(gt)
AE cạnh chung
=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)
=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)
b, xét t.giác AIC và t.giác AID có:
AI cạnh chung
\(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)
AC=AD(gt)
=> t.giác AIC=t.giác AID(c.g.c)
=> IC=ID=> I là trung điểm của CD(1)
\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)
từ (1) và (2) suy ra AE là trung trực của CD
A B C D E I
a) Xét tam giác AID và tam giác AIH
Có: AD=AH(gt)
AI cạnh chung
ID=IH(gt)
=>Tam giác AID= Tam giác AIH
b)Xét tam giác ACB
Có: A+B+C=180
=>B+C=180-90
=>B+C=90
c)Có tam giác AID= tam giác AIH(câu a)
=>AID=AIH(Hai góc tương ứng)
Mà AIH+AID=180
=>AIH=90
=>Cạnh AI vuông góc với cạnh HD
d)