Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).
lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345
Ta dễ thấy a,b đều dương
Ta có
a + b \(\ge2\sqrt{ab}\)
<=> \(\frac{a+b}{2}\ge\sqrt{ab}\)
làm sao để có được bất phương trình a+b \(\ge\)2 \(\sqrt{ab}\)
Ta có \(AC^2=CH.BC=AB.BC\)
Mà \(BC^2=AB^2+AC^2\) \(=AB^2+AB.BC\)
\(\Leftrightarrow AB^2+AB.BC-BC^2=0\)
\(\Leftrightarrow\left(\dfrac{AB}{BC}\right)^2+\dfrac{AB}{BC}-1=0\)
\(\Leftrightarrow\dfrac{AB}{BC}=\dfrac{-1+\sqrt{5}}{2}\) (loại TH \(\dfrac{AB}{BC}=\dfrac{-1-\sqrt{5}}{2}< 0\))
\(\Leftrightarrow\cos B=\dfrac{\sqrt{5}-1}{2}\), đpcm.