Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P Q R H K E F
a) Xét tam giác PQH và tam giác PRH có :
\(PQ=PR\left(gt\right)\)
\(PH\)chung
\(QH=RH\left(gt\right)\)
\(=>\) Tam giác PQH = tam giác PRH (c-c-c)
b, Ta có tam giác PQR cân tại P và có đường trung tuyến PH
Suy ra PH là đường trung tuyến đồng thời là đường cao
\(=>PH\perp QR\)
c,Ta có : \(\hept{\begin{cases}QH=RH\\KH=PH\end{cases}}\)
\(=>\)Tứ giác PQKR là hình bình hành
\(=>\)\(RK=PQ\)
Mà theo giả thiết : \(PQ=PR\)
Suy ra : \(PR=PK\)
a]Xét hai tam giác vuông MNE và tam giác vuông FNE có ;
cạnh NE chung
góc MNE = góc FNE [ gt ]
Do đó ; tam giác MNE = tam giác FNE [ cạnh huyền - góc nhọn ]
b]Theo câu [ a ] ; tam giác MNE = tam giác FNE
\(\Rightarrow\) MN = FN ; EN = EF
\(\Rightarrow\) NE là đường trung trực của tam giác NMF
c]Vì ba điểm M , E , P thẳng hàng nên
góc MEP = 180độ = góc MEN + góc FEN + góc FEP
mà góc FEP = góc MEQ
suy ra ; góc QEF = góc MEN + góc FEN + góc MEQ = 180độ
vậy ba điểm Q,E,F thẳng hàng
học tốt nhé
kết bạn với mình nhé
Ta có : \(\Delta MNE=\Delta FNE\left(cma\right)\)
\(\Rightarrow ME=EF\)( 2 cạnh tương ứng )
Xét \(\Delta QME\)và \(\Delta PFE\)có :
\(MQ=EF\left(gt\right)\)
\(\widehat{QME}=\widehat{PFE}\left(=90^o\right)\)
\(ME=EF\left(cmt\right)\)
\(\Rightarrow\Delta QME=\Delta PFE\left(c.g.c\right)\)
\(\Rightarrow\widehat{MEQ}=\widehat{PEF}\)( 2 góc tương ứng )
Ta có : \(\widehat{MEF}+\widehat{FEP}=180^o\)( kề bù )
mà \(\widehat{FEP}=\widehat{MEQ}\left(cmt\right)\)
\(\Rightarrow\widehat{MEF}+\widehat{MEQ}=180^o\)
\(\Rightarrow\)3 điểm Q , E , F thẳng hàng
a) Xét tam giác BAD và tam giác BED có :
BA = BE ( gt )
^ABD = ^EBD ( BD là tia phân giác của ^B )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> AD = ED ( hai cạnh tương ứng )
=> ^BDA = ^BDE ( hai góc tương ứng )
mà ^BDA + ^BDE = 1800 ( kề bù )
=> ^BDA = ^BDE = 1800/2 = 900
=> BD vuông góc với AE ( đpcm )
b) BD vuông góc với AE
=> D thuộc AE
Lại có AD = ED
=> BD là đường trung trực của AE
Giải
a) Xét 2 tam giác BAD và tam giác BED có:
BD là cạnh chung
BA = BE ( gt )
Góc ABD = góc EBD ( gt )
Do đó : Tam giác BAD = tam giác BED (c.g.c )
=> góc BAD = góc BED ( hai cạnh tương ứng )
=> BED = 90° => DE vuông góc với BE
b) Theo câu a ta có : Tam giác BAD = tam giác BED => DA = DE nên D thuộc đừng trung trực của AE
Mà BA = BE ( gt ) nên B thuộc đừng trung trực của AE
Vậy BD là đường trung trực của AE
Học tốt
c) xét tam giác vuông DEH và DHI
có góc DEH = IDH(gt)
cạnh DH chung
=> tam giác DEH=IDH (ch-gn)
d) gọi K là giao điểm của EI và DH
xét tam giác EDK và IDK
có ED=ID(EDH=IDH)
góc EDK = IDK(gt)
cạnh DK chung
=> tam giác EDK = IDK(cgc)
=>IK=IK(2 cạnh tương ứng) (1)
góc DKE=DKI(2 góc tương ứng)
ta có góc DKE+DKI=180(kề bù)
mà góc DKE=DKI
=> góc DKI=DKE=180:2
DKI=DKE=90 (2)
Từ (1)(2)=> DK là trung trực của EI
hay DH là trung trực của EI
Chúc bạn học tốt
chó nóng
có ai giúp mình vs mai mình thi học kì zồi T_T