K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc BMC=góc BNC=90 độ

=>BMNC nội tiếp

=>góc BMN+góc BCN=180 độ

=>góc AMN=góc ACB

mà góc A chung

nên ΔAMN đồng dạng với ΔACB

a: Xét tứ giác DMHN có \(\widehat{DMH}+\widehat{DNH}=90^0+90^0=180^0\)

nên DMHN là tứ giác nội tiếp

Xét tứ giác DMKE có \(\widehat{DME}=\widehat{DKE}=90^0\)

nên DMKE là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{DFE}\) là góc nội tiếp chắn cung DE

\(\widehat{DSE}\) là góc nội tiếp chắn cung DE

Do đó: \(\widehat{DFE}=\widehat{DSE}\)

Xét (O) có

ΔDES nội tiếp

DS là đường kính

Do đó: ΔDES vuông tại E

Xét ΔDES vuông tại E và ΔDKF vuông tại K có

\(\widehat{DSE}=\widehat{DFK}\)

Do đó: ΔDES đồng dạng với ΔDKF

c: Kẻ tiếp tuyến Fx của (O)

Xét (O) có

\(\widehat{xFE}\) là góc tạo bởi tiếp tuyến Fx và dây cung FE

\(\widehat{EDM}\) là góc nội tiếp chắn cung EF

Do đó: \(\widehat{xFE}=\widehat{EDM}\)

mà \(\widehat{EDM}=\widehat{MKF}\left(=180^0-\widehat{MKE}\right)\)

nên \(\widehat{xFE}=\widehat{MFK}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MK//Fx

Ta có: MK//Fx

OF\(\perp\)Fx

Do đó: OF\(\perp\)MK

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét ΔAHB vuông tại H và ΔACD vuông tại C có 

\(\widehat{ABH}=\widehat{ADC}\)

Do đó: ΔAHB∼ΔACD

24 tháng 2 2022

có vẽ hình ko ạ ?

 

8 tháng 5 2020

A B C H D

Ta có: AH vuông BC => ^AHB = 90 độ 

Xét trong đường tròn tâm O

^ACB chắn cung AD  và AD là đường kính => ^ACB = 90 độ 

Xét \(\Delta\)AHB và \(\Delta\)ACD có: ^AHB = ^ACB ( = 90 độ ) ; ^ABH = ^ADC ( cùng chắn cung AC ) 

=> \(\Delta\)AHB ~ \(\Delta\)ACD (g-g)

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

30 tháng 5 2021

a) Ta có \(\widehat{AMH}=\widehat{ANH}\) nên tứ giác AMHN nội tiếp đường tròn đường kính AH.

b) Tứ giác AMHN nội tiếp nên \(\widehat{AMN}=\widehat{AHN}=\widehat{ACB}\Rightarrow\Delta AMN\sim\Delta ACB\left(g.g\right)\)

30 tháng 5 2021

Bạn có hình vẽ ko

 

a: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

=>BFEC là tứ giác nội tiếp

b: BFEC là tứ giác nội tiếp

=>\(\widehat{BFE}+\widehat{BCE}=180^0\)

mà \(\widehat{BFE}+\widehat{AFE}=180^0\)(hai góc kề bù)

nên \(\widehat{AFE}=\widehat{ACB}\)

Xét ΔAFE và ΔACB có

\(\widehat{AFE}=\widehat{ACB}\)

\(\widehat{FAE}\) chung

Do đó: ΔAFE đồng dạng với ΔACB