K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có

OM chung

\(\widehat{HOM}=\widehat{KOM}\)

Do đó: ΔOHM=ΔOKM

b: ta có: ΔOHM=ΔOKM

nên MH=MK

hay ΔMHK cân tại M

c: \(\widehat{KMH}=360^0-90^0-90^0-120^0=60^0\)

nênΔMHK đều

3 tháng 3 2017

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

15 tháng 3 2017

K

Hình hơi xấu hì hì! tự viết GT KL nha!

Cm:

a) \(\Delta ABC\)cân tại A (gt)

=> AB=AC

=>AC=4cm (vì AB=4cm(gt))

Vậy AC=4cm.

b) \(\Delta ABC\)cân tại A (gt)

=>\(\widehat{B}=\widehat{C}\)

\(\Delta ABC\)có:\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(ĐL tổng 3 góc trong 1 tam giác)

\(\Rightarrow60^0+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

=> \(\Delta ABC\)đều.

c) Xét \(\Delta ABM\)và \(\Delta ACM\)có:

AM chung

AB=AC

BM=CM

=>\(\Delta ABM\)=\(\Delta ACM\) (c.c.c)

                               (đpcm)

d) Vì \(\Delta ABM\)=\(\Delta ACM\)(cmt)

=>\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(2 góc kề bù)

=>\(\widehat{AMB}=\widehat{AMC}=90^0\)

=> \(AM⊥BC\)(Đpcm)

e)Xét \(\Delta BHM\)và \(\Delta CKM\)có:

\(\widehat{BHM}=\widehat{CKM}=90^0\)

BM=CM

\(\widehat{B}=\widehat{C}\)

=>\(\Delta BHM\)=\(\Delta CKM\)(cạnh huyền-góc nhọn)

=>MH=MK(2 cạnh t/ứ)

              (đpcm)

22 tháng 4 2020

A B C I M K

a, Xét tam giác vuông MHC có :

\(\widehat{CMH}+\widehat{HCM}=90^o\)

Xét tam giác vuông ABC có:

\(\widehat{HIB}+\widehat{HCM}=90^o\)

\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)

Xét 2 tam giác : KHM và IHB

MH = HB ( gt )

\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)

\(\widehat{MKH}=\widehat{HIB}=90^o\)

\(\Rightarrow\Delta KHM=\Delta IHB\)

b, \(\Rightarrow HK=HI\)

Xét 2 tam giác : KHA và IHA

KM = IH ( cm a )

AN chung

\(\widehat{HKA}=\widehat{AIM}=90^o\)

\(\Rightarrow\Delta KHA=\Delta IHA\)

\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)

Vậy : AH là tia phân giác góc BAC

22 tháng 4 2020

a, xet △ vuong mhc co  ∠cmh + ∠hcm = 90 do  xet △ vuong abc co  ∠hbi + ∠hcm = 90 do  suy ra ∠cmh = ∠hbi  xet △ BHI va △ MHK co  ∠CMH = ∠HBI [c/m tr]  HM = BH [gt]  ∠BIH = ∠MKH [=90 do]  ➩ △ BHI = △ MHK [ch-gn]  b, tu a co △bhi = △mhk ➩ ih = kh   xet △aih va △akh co  ah chung  ih = kh [c/m tr]  ∠aih = ∠akh [= 90 do]  ➩ △aih = △kah [ch-cgv]  ➩ ∠iah = ∠kah  ➩ ah la p/g cua ∠bac

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)


 

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

9 tháng 3 2022

giúp với :vvvv

9 tháng 3 2022

a) Xét \(\Delta MBH\) vuông tại H và \(\Delta MCK\) vuông tại K:

BM = CM (M là trung điểm BC).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta MBH=\Delta MCK\) (cạnh huyền - góc nhọn).