Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABI và ΔCKI có
IA=IC
\(\widehat{AIB}=\widehat{CIK}\)
IB=IK
Do đó: ΔABI=ΔCKI
b: Xét tứ giác ABCK có
I là trung điểm của AC
I là trung điểm của BK
Do đó: ABCK là hình bình hành
Suy ra: KC//AB
a) Xét t/g ABI và t/g CKI có:
AI = CI (gt)
AIB = CIK ( đối đỉnh)
BI = KI (gt)
Do đó, t/g ABI = t/g CKI (c.g.c) (đpcm)
b) t/g ABI = t/g CKI (câu a) => ABI = CKI (2 góc tương ứng)
Mà ABI và CKI là 2 góc ở vị trí so le trong nên AB // KC (đpcm)
c) đề sai nhé sửa IB = IF thành ID = IF
Xét t/g DBI và t/g FKI có:
ID = IF (gt)
DIB = FIK ( đối đỉnh)
IB = IK (gt)
Do đó, t/g DBI = t/g FKI (c.g.c)
=> DBI = FKI (2 góc tương ứng)
Mà DBI và FKI là 2 góc ở vị trí so le trong nên BD // KF (đpcm)
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: BK=DK
Xét ΔBKF và ΔDKC có
KB=KD
\(\widehat{KBF}=\widehat{KDC}\)
BF=DC
Do đó: ΔBKF=ΔDKC
Suy ra: \(\widehat{BKF}=\widehat{DKC}\)
=>\(\widehat{BKF}+\widehat{BKD}=180^0\)
=>F,D,K thẳng hàng
b: Xét tứ giác ABCK có
I là trung điểm của AC
I là trung điểm của BK
Do đó: ABCK là hình bình hành
Suy ra: AB//KC
bn ơi
Mik đg hk về tam giác và chủ đề của bài tập cug là tam giác nha bn