K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SV
24 tháng 3 2015
a) Ta có AB = AC => cung AB = cung AC => A là điểm chính giữa cung BC => AD vuông góc với BC tại E là trung điểm BC( t/c đường kính, dây và cung) => BE = CE
b) Trong tam giác ABC có AE và BH là 2 đg cao cắt nhau tai G nên G là trực tâm => CK vuông góc AB
c) Ta có góc ACD là góc nội tiếp chắn nửa (O) => góc ACD = 900. => CD vuông góc AC mà BG vuông góc AC => BG // DC.
chứng minh tương tự CG // BD => BDCG là hình bình hành mà BC vuông DG. Vậy BDCG là hình thoi
d) Chứng minh như trên ta có tứ giác AIBG là hình bình hành => M là trung điểm AB, IG => OM là đg trung bình của tg ABD => OM = 1/2BD mà BD = BG => OM =1/2BG hay BG = 2OM
A B C D H E O
a/ Ta góc góc ACD chắn nửa cung AD là đường kính của (O)
=> góc ACD = 90 độ => CD vuông góc AC
Mà BH vuông góc với AC => BH // CD
b/ Tương tự ta cũng chứng minh được CH // BD
Từ câu a) có BH // CD => BHCD là hình bình hành
c/ Áp dụng công thức tính diện tích tam giác : \(S_{ABC}=\frac{1}{2}.AC^2.\frac{sinA.sinC}{sinB}=\frac{1}{2}.5^2.\frac{sin60^o.sin45^o}{sin75^o}=\frac{75-25\sqrt{3}}{4}\) (cm2)
C.ơn ạ