Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
a) sử dụng tính chất tổng 2 góc đối = 180
hoặc 2 góc cùng nhìn 1 cạnh
b) sử dụng góc nội tiếp bằng nhau ở vị trí so le hoặc đồng vị
Bạn tự vẽ hình nha ^-^
a, Xét tứ giác BFEC có:
BFC=BEC =90 mà 2 góc này cùng nhìn cạnh BC
nên tứ giác BFEC nội tiếp
b,Ta thấy
BPQ= 1/2 cung BQ
BCQ=1/2 cung BQ
nên BPQ=BCQ
c,Tứ giác BFEC nội tiếp nên EBC=EFC (cùng nhìn cạnh EC)
và PBC=PQC (góc nội tiếp cùng chắn cung PC)
nên CFE=CQP (=PBC)
mà 2 góc ở vị trí đồng vị nên EF//QP
d, Kéo dài OA cắt đường tròn (O,R) tại I
ta có :AEF=ABC=1/2 cung AC
IAC =1/2 cung IC
nên AEF+IAC=1/2(cung AC+cung IC)=1/2 cung AI=90
vậy AO vuông góc với EF
a, Xét tứ giác BFEC có:
BFC=BEC =90 mà 2 góc này cùng nhìn cạnh BC
nên tứ giác BFEC nội tiếp
b,Ta thấy
BPQ= 1/2 cung BQ
BCQ=1/2 cung BQ
nên BPQ=BCQ
c,Tứ giác BFEC nội tiếp nên EBC=EFC (cùng nhìn cạnh EC)
và PBC=PQC (góc nội tiếp cùng chắn cung PC)
nên CFE=CQP (=PBC)
mà 2 góc ở vị trí đồng vị nên EF//QP
d, Kéo dài OA cắt đường tròn (O,R) tại I
ta có :AEF=ABC=1/2 cung AC
IAC =1/2 cung IC
nên AEF+IAC=1/2(cung AC+cung IC)=1/2 cung AI=90
vậy AO vuông góc với EF
a: Xét (O) có
góc ACN là góc nội tiếp chắn cung AN
góc ABM là góc nội tiếp chắn cung AM
góc ABM=góc ACN
Do đó: AM=AN
b: Kẻ tiếp tuyến phụ Ax
=>góc xAC=góc ABC
mà góc ABC=góc AEF
nên góc AEF=góc xAC
=>Ax//FE
=>OA vuông góc với FE
A) GÓC BFC=BIC CUNG NHÌN BC DƯỚI MOOTF GÓC=90 \(\Rightarrow\) BCEF NỘI TIẾP
B) VÌ BCEF NỒI TIẾPÓC MBC=CFE
GÓC MNC=MBC(=1/2SĐ CUNG MC)
\(\Rightarrow\) GÓC MNC=CFE\(\Rightarrow\) MN//È
C) VÌ BCEF NỘI TIẾP GÓC FBM=FCE
MÀ FBM=1/2 SĐ CUNG AN , FCE=1/2 SĐ CUNG AM \(\Rightarrow\)CUNG AN=CUNG AM ĐI QUA TRUNG ĐIỂM VUÔNG GÓC È