K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2020

K lm mà đòi cs ăn thì ăn đầu buồy!!

 

bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.

19 tháng 12 2019

a, xét tam giác ABD và tam giác ACE có góc A chung

AB = AC (gt)

góc ADB = góc AEC = 90 

=> tam giác ABD = tam giác ACE (ch-gn)

b, tam giác abd = tam giác ACE (câu a)

=> góc ABD = góc ACE (Đn)

AB = AC (gt) => tam giác ABC cân tại  A (Đn) => góc ABC = góc ACB

có ABD + góc DBC = góc ABC 

góc ACE + góc ECB = góc ACB 

=> góc DBC = góc ECB

=> Tam giác IBC cân tại I 

=> IB = IC

xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)

góc BEC = góc CDB = 90

=> tam giác EIB = tam giác DIC (ch-gn)

=> EI = ID (đn)

16 tháng 12 2021

đn là gì đấy bạn

 

15 tháng 2 2020

a, Xét 2 tam giác vuông ΔABD và ΔACE có:

AB = AC (gt); 

góc A chung

⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn) (đpcm)

b, ΔABD = ΔACE ⇒ AD = AE

⇒ AC - AD = AB - AE ⇒ BE = CD

Xét 2 tam giác vuông ΔBIE và ΔCID có:

BE = CD

\(\widehat{BEI}=\widehat{CDI}\) ( đối đỉnh )

⇒ ΔBEI = ΔCDI (cạnh góc vuông - góc nhọn)

15 tháng 2 2020

A B C D E I

     hình vẽ 

18 tháng 12 2018

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

16 tháng 4 2022

Cứu tớ vsss:<

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đo: ΔABD=ΔACE

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

Suy ra: \(\widehat{EAI}=\widehat{DAI}\)

hay AI là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

18 tháng 1 2017

A B C E D I

cách giải mk gửi bn sau nhé

18 tháng 1 2017

cách giải đây

\(\Delta ABC\)có AB = AC suy ra tam giác ABC tà tam giác cân

xét \(\Delta EBC\)\(\Delta DCB\)

góc B = góc C ( tam giác cân )

BC là cạnh huyền chung

do đó tam giác EBC = tam giác DCB ( cạnh huyền - góc nhọn )

suy ra BD = CE ( 2 cạnh tương ứng )

b)  A B C E D I H

xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}}\)

do đó \(\Delta AHB=\Delta AHC\left(c.g.c\right)\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 góc tương ứng)

xét tam giác vuông AIE và tam giác vuông AID có

AI là cạnh huyền chung

góc BAH = góc CAH ( cmt)

do đó tam giác AIE = tam giác AID ( cạnh huyền - góc nhọn )

suy ra EI = ID ( 2 cạnh tương ứng )

c)   góc BAH = góc CAH mà tia AH nằm giữa tia AB và AC nên AH là phân giác góc BAC (1)

tam giác AIE = tam giác AID suy ra góc EAI = góc DAI ( 2 góc tương ứng )

mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác góc EAD hay góc BAC (2)

từ (1)  và (2) suy ra ba điểm A;I:H thẳng hàng