Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác nhọn có AB<AC;AH vuông góc với BC( H thuộc BC )
a) So sánh HB với CH; AB với AH. So sánh BH với AB+AC với BC.
b) Kẻ BC vuông góc với AC ( K thuộc AC). Gọi I là giao điểm của AH và BK. Chứng minh CI vuông góc với AB
Xét tg vuông ABH
\(\widehat{HAB}+\widehat{ABC}=\widehat{HAB}+\widehat{KBA}+\widehat{KBC}=90\)
Xét tg vuông BCK
\(\widehat{KBC}+\widehat{C}=90\Rightarrow\widehat{KBC}=90-\widehat{C}=90-65=25\)
\(\Rightarrow\widehat{HAB}+\widehat{KBA}=90-\widehat{KBC}=90-25=65\)
Cách 2:
Xét tg vuông BCK
\(\widehat{KBC}+\widehat{C}=90\) (1)
Xét tg vuông BIH
\(\widehat{KBC}+\widehat{BIH}=90\) (2)
Mà \(\widehat{BIH}=\widehat{AIK}\) (góc đối đỉnh) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{AIK}=\widehat{C}=65\)
Xét tg ABI
\(\widehat{AIK}=\widehat{HAB}+\widehat{KBA}=65\) (góc ngoài của 1 tam giác bằng tổng 2 góc trong không kề với nó)
A B C H
a) Xét t/giác ABH vuông tại H , ta có: AB2 = AH2 + BH2 (Pi - ta - go)
=> AB2 = 122 + 52 = 169 => AB = 13 (cm)
Ta có: HC + BH = BC => HC = BC - BH = 14 - 5 = 9 (cm)
Xét t/giác AHC vuông tại H, có: AC2 = HC2 + AH2 (Pi - ta - go)
=> AC2 = 92 + 122 = 225 => AC = 15 (cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=12^2+5^2=169\)
hay AB=13(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=14-5=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+9^2=225\)
hay AC=15(cm)
Vậy: AB=13cm; AC=15cm