Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Nối AM
- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)
- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)
Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)
b/ Ta có: AM=AE (cmt)
- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM
Tương tự ta cũng có: AM=AD (cmt)
- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM
Từ đó suy ra được: BD // CE (đpcm)
c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất
Lời giải bạn Thanh đúng rồi, mình vẽ hình và trình bày lại cho rõ hơn như sau:
A B C M D E I K
a) Do D và M đối xứng qua AB nên AD = AM
E và M đối xứng qua AC nên AE = AM
=> AD = AE (vì cùng bằng AM)
b) Theo câu a) thì AD = AE nên tam giác ADE cân => \(\widehat{ADE}=\widehat{AED}\) (1)
tam giác AID = tam giác AIM t(trường hợp CGC) vì có AI chung, AD = AM, \(\widehat{DAI}=\widehat{IAM}\)
=> \(\widehat{ADI}=\widehat{AMI}\) (2)
Tương tự: \(\widehat{AEK}=\widehat{AMK}\) (3)
Từ (1), (2) và (3) suy ra \(\widehat{AMI}=\widehat{AMK}\) +> AM là phân giác góc \(\widehat{IMK}\)
c) Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)
=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.
=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)
Mà AD = AE = AM
=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)
\(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)
=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC
BAI NAY DE QUA NHO K DUNG NHA !
cau a
vi D,M doi xung nen tam giac ADM co AD=AM
cmtt voi tam giac AME nen co AM=AE
tu do co AD=AE
cau b
cm tam AIK=tam giac AIM do chung AD;AD=AM;DAI=MAI
nen goc AID= goc AMI
CMTT VOI tam giacAKM va AKE CO AMK=AEK
co AD = AE NEN TAM GIAC ADE CAN NE ADI=AEK
TU LAM NOT CAU C GOI Y AM LA DUONG CAO THI DE NHO NHAT
A A A B B B C C C M M M D D D E E E
Do E đối xứng với M qua AC nên AC là đường trung trực EM.
Do đó AE = AM (1). Tương tự AD = AM (2)
Cộng theo vế (1) và (2) suy ra AE + AD = 2AM. (3)
*Chứng minh A, E, D thẳng hàng
Theo (1) thì AE = AM -> tam giác AEM cân tại A.
Do đó \(\widehat{EAM}=180^o-2\widehat{EMA}\)(4)
Tương tự \(\widehat{MAD}=180^o-2\widehat{AMD}\)(5)
Cộng theo vế (4) và (5) suy ra ^EAD = 180o do đó D, E, A thẳng hàng => AE + AD = ED
Kết hợp (3) ED = 2AM . Hạ \(AH\perp BC\) thì \(AM\ge AH\)
Đẳng thức xảy ra khi M trùng H.
Do đó \(ED\ge2AM\ge2AH=const\)
Đẳng thức xảy ra khi M trùng H hay M là chân đường cao hạ từ A đến BC.
P/s: Mới học dạng này nên ko chắc..
ABCMDEIK
Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)
=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.
=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)
Mà AD = AE = AM
=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)
\(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)
=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC