K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

ΔAEC nội tiếp đường tròn(A,E,C cùng thuộc (O))

AC là đường kính của (O)(gt)

Do đó: ΔAEC vuông tại E(Định lí)

\(\Rightarrow\)AE\(\perp\)EC tại E

\(\Rightarrow\)AE\(\perp\)BE tại E

hay \(\widehat{AEB}=90^0\)

Xét ΔAEB có \(\widehat{AEB}=90^0\)(cmt)

nên ΔAEB vuông tại E(Định nghĩa tam giác vuông)

Xét ΔAEB vuông tại E có \(\widehat{ABE}=45^0\)(gt)

nên ΔAEB vuông cân tại E(Định lí tam giác vuông cân)

\(\Rightarrow\)AE=EB(hai cạnh bên của ΔAEB vuông cân tại E)

b)

Ta có: EA\(\perp\)EB(cmt)

nên \(EA\perp EH\) tại E

Xét ΔEHB có \(EA\perp EH\) tại E(cmt)

nên ΔEHB vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔEHB vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền BH(I là trung điểm của BH)

nên \(EI=\dfrac{BH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(IH=BI=\dfrac{BH}{2}\)(I là trung điểm của BH)

nên EI=IH=IB

Ta có: IH=IE(cmt)

nên I nằm trên đường trung trực của HE(Tính chất đường trung trực của một đoạn thẳng)

hay đường trung trực của HE đi qua trung điểm I của BH(đpcm)

c) Ta có: \(AE\perp EC\) tại E(cmt)

nên \(AE\perp BC\) tại E

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C cùng thuộc đường tròn(O))

AC là đường kính của (O)(gt)

Do đó: ΔADC vuông tại D(Định lí)

\(\Rightarrow CD\perp AD\) tại D

hay \(CD\perp BA\) tại D

Xét ΔBAC có 

AE là đường cao ứng với cạnh BC(cmt)

CD là đường cao ứng với cạnh BA(cmt)

AE cắt CD tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

\(\Rightarrow\)BH là đường cao ứng với cạnh AC

hay \(BH\perp AC\)(đpcm)

4 tháng 10 2022

 bạn ơi phần "Do đó: ΔAEC vuông tại E(Định lí)" ở câu a là định lí nào vậy?

3 tháng 11 2020

Ớ thế phần C làm như thế nào

12 tháng 2 2017

AB không nhất thiết phải nhỏ hơn AC nhé các bác

12 tháng 2 2017

em sửa chỗ kia chút cắt AB tại D, AC tại E

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

22 tháng 3 2021

a/ Ta có

\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)

=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB

b/ Ta có

\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)

\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)

\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)

Mà \(AH\perp BC\Rightarrow DF\perp BC\)

c/

Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.

Nối I với H, D với H 

Xét \(\Delta HDF\) và \(\Delta HEI\) ta có

\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)

\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)

Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)

\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)

\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\)  => tg HDF đồng dạng với tg HEI

\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)