K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

b) Ta có  \(\Delta ABM\)\(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)

=> AB // CD (đpcm)

28 tháng 11 2021
S/fffffffffdsbdhdjndbdbdbfbfbdbbdbdbfndndndbfnfnfnfnfnfn
16 tháng 12 2017

Cho tam giác ABC vuông tại A.Gọi M là trung điểm của AC.Trên tia đối của tia MB lấy điêmr D sao cho MD=MB

a/ Chứng minh tam giác AMD bằng tam giác CMB

b/Chứng minh  AD=BC và AD//BC

c/Chứng minh AC vuông góc với CD

d/Đường thẳng đi qua B song song với AC cắt CD tại N . Chứng minh tam giác ABM bằng tam giác CNM

   CẢ NHÀ GIÚP EM VỚI, MAI EM NỘP RỒI Ạ

24 tháng 11 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD

9 tháng 12 2018

a) CM Tam giac ABM = tam giac CDM

Xét tam giac ABM và Tam giác CDM, ta có:

MA = MC (gt)

MB=MD (gt)

Góc AMB = góc DMC (đđ)

Suy ra Tam giác ABM = Tam giác CDM

b) CM AB song song CD

Ta có: Góc MBA =góc MCD ( cmt)

Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD

c) CM E là trung điểm AC

Ta có: Tứ giác ABCD có:

M là trung điểm AC gt)

M là trung điểm BD (gt)

Mà AC cắt BD tại M

Suy ra: Tứ giac ABCD là hình bình hành

Ta lại có: MN là trung điểm BC , MN //AB//CD.

Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.

11 tháng 1 2017

Câu 1:

d A B C D E

Vì BD \(\perp\) d nên \(\widehat{BDA}\) = 90o

Ta có:

\(\widehat{BAD}\) + \(\widehat{BAC}\) + \(\widehat{CAE}\) = 180o

=> \(\widehat{BAD}\) + 90o + \(\widehat{CAE}\) = 180o

=> \(\widehat{BAD}\) + \(\widehat{CAE}\) = 90o (1)

Áp dụng tính chất tam giác vuông ta có:

\(\widehat{DBA}\) + \(\widehat{BAD}\) = 90o (2)

Từ (1) và (2) suy ra:

\(\widehat{BAD}\) + \(\widehat{CAE}\) = \(\widehat{DBA}\) + \(\widehat{BAD}\)

=> \(\widehat{CAE}\) = \(\widehat{DBA}\)

Xét \(\Delta\)DBA vuông tại D và \(\Delta\)EAC vuông tại E có:

BA = AC (giả thiết)

\(\widehat{DBA}\) = \(\widehat{EAC}\) (chứng minh trên)

=> \(\Delta\)DBA = \(\Delta\)EAC (cạnh huyền - góc nhọn)

=> DB = EA và DA = EC (2 cặp cạnh tương ứng).

Câu 2: Mk sẽ làm ở đây: /hoidap/question/166568.html

11 tháng 1 2017

A E D M B N C

a) Xét \(\Delta\)ABM và \(\Delta\)CDM có:

AM = CM (suy từ giả thiết)

\(\widehat{AMB}\) = \(\widehat{CMD}\) (đối đỉnh)

BM = DM (giả thiết)

=> \(\Delta\)ABM = \(\Delta\)CDM (c.g.c)

b) Xét \(\Delta\)AMD và \(\Delta\)CMB có:

AM = CM (suy từ gt)

\(\widehat{AMD}\) = \(\widehat{CMB}\) (đối đỉnh)

MD = MB (gt)

=> \(\Delta\)AMD = \(\Delta\)CMB (c.g.c)

=> \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)

mà 2 góc ở vị trí so le trong nên AD // BC.

c) Vì \(\Delta\)AMD = \(\Delta\)CMB (câu b)

nên \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)

hay \(\widehat{EDM}\) = \(\widehat{NBM}\)

Xét \(\Delta\)EDM và \(\Delta\)NBM có:

\(\widehat{EDM}\) = \(\widehat{NBM}\) (chứng minh trên)

DM = BM (gt)

\(\widehat{EMD}\) = \(\widehat{NMB}\) (đối đỉnh)

=> \(\Delta\)EDM = \(\Delta\)NBM (g.c.g)

=> EM = NM (2 cạnh tương ứng)

Do đó M là trung điểm của NE.

11 tháng 1 2017

Câu mk làm là câu 2, còn câu 1 làm ở phần kia nha

5 tháng 1 2017

a/ Xét t/g ABM và t/g CDM có:

AM = CM (gt)

góc AMB = góc CMD (đối đỉnh)

BM = DM (gt)

=> t/g ABM = t/g CDM (c.g.c)

b/ Vì t/g ABM t/g CDM (ý a)

=> góc BAM = góc DCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong nên

=> AB // DC

c/++) Xét t/g AEM và t/g CNM có:

góc MAE = góc MCN ( so le trong do AB // CD)

AM = CM (gt)

góc AME = góc CMD (đối đỉnh)

=> t/g AEM = t/g CNM (g.c.g)

=> AE = CN (1)

+) Cm tương tự ta có:

t/g DEM = t/g BNM (g.c.g)

=> DE = BN (2)

Từ (1) và (2)

=> E là trung điểm của đoạn thẳng AD