Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K
a, Xét tam giác AHB và tam giác AKC ta có
^AHB = ^AKC = 900
^A _ chung
Vậy tam giác AHB ~ tam giác AKC ( g.g )
\(\Rightarrow\frac{AH}{AK}=\frac{AB}{AC}\Rightarrow\frac{AC}{AK}=\frac{AB}{AH}\)
b, Xét tam giác AHK và tam giác ABC ta có :
^A _ chung
\(\frac{AC}{AK}=\frac{AB}{AH}\)( cmt )
Vậy tam giác AHK ~ tam giác ABC ( c.g.c )
Do 2 tam giác đồng dạng theo trường hợp c.g.c tức là ^AHK = ^ABC
mà ^ABC = 580 => ^AHK = 580
a) - Ta có: SABCD=AH.BC=AK.AB.
=>\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\)
- Ta có: \(\widehat{ABC}+\widehat{BAD}=180^0\) (AD//BC).
=>\(\widehat{ABC}+\widehat{BAH}+\widehat{HAK}+\widehat{KAD}=180^0\)
=>\(90^0+\widehat{HAK}+\widehat{KAD}=180^0\)
=>\(\widehat{HAK}+\widehat{KAD}=90^0\) mà \(\widehat{KAD}+\widehat{ADK}=90^0\) (tam giác ADK vuông tại K) nên \(\widehat{HAK}=\widehat{ADK}\) mà \(\widehat{ADK}=\widehat{ABC}\) (ABCD là hình bình hành) nên\(\widehat{HAK}=\widehat{ABC}\)
- Xét tam giác AKH và tam giác BCA có:
\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\) (cmt)
\(\widehat{HAK}=\widehat{ABC}\) (cmt)
=> Tam giác AKH ∼ Tam giác BCA (c-g-c).
b) - Ta có: Tam giác AKH ∼ Tam giác BCA (cmt) nên:
\(\widehat{AKH}=\widehat{ACB}=40^0\) (2 góc tương ứng)
hình tự kẻ ạ :3
a)
xét ΔABE và ΔACF có:
\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)
Xét tam giác AHB và tam giác AKC
^A _ chung ; AB = AC
Vậy tam giác AHB = tam giác AKC (ch-gn)
=> AH/AK = AB/AC => AH/AB = AK/AC
Xét tam giác AKH và tam giác ACB có
^A _ chung; AH/AB = AK/AC
Vậy tam giác AKH ~ tam giác ACB (c.g.c)